RocketCad

Manual and Notes

Copyright 1986-2016 by Rocket Software Ltd. All rights reserved.

www.rocketcad.com

Contents (2 pages)
5The RocketCad License Agreement

9Introduction.

11Installation

12Getting Started

12Scaling

12Linetype Scale

12Snap

12Layers

13Loading your own Lisps

13Lisps which run when a drawing is opened

13The Icon Menus

13The Pulldown menus

16Pen Weights

16Paper Sizes

17Troubleshooting

18Block Problems

18Osnap to Block Subentities

18Linetype Problems

18Shapes

19Text Problems

20Corrupt and Crashing Drawings

20Dutch People

21Attdefs in The Wrong Place

21Xref Trouble

21Changes to the Wrong Drawing

22Hatch Problems

22Selecting just a Hatch

22Erasing an OLE picture

23View Twist Problems

24Scaling in CAD

25North Arrows and Text Orientation

25Dates

28Text Formatting Codes

29Rocket.shx

31Keyboard Shortcuts and the .pgp File

33EzLay – Layer Management Utility

35Cabx – Text Databasing.

37Fang – Batch Files

39Np.lsp – Plot a Drawing

41Chart

43Zlin

45Xrefs, Paper and Model Space

45Xrefed Title Blocks

46Paper and Model Space

47Inserting an Xref

47Viewports in Paper Space

48Utilities.

49Markups

50Markups: The Unlikely Ideal

51Used Markups

51Xerox Copies

54Units

55Text Size

56On Designing Title (and Other) Blocks.

62Programs by Category

74The Lisp Index

The RocketCad License Agreement

Important: Read this before using RocketCad.

This document is a legal agreement between you and Rocket Software Ltd. (Rocket). Use of any portion of the RocketCad package indicates your acceptance of these terms. As used in this License Agreement, the term "Software" means the RocketCad package or any part thereof.

If you do not agree to these terms and conditions, you must erase or destroy any copies of the software package or any part thereof, including but not limited to program files, configuration files, descriptive or instructional document files, and drawing files, printouts, and copies made in any form whatsoever.

1. Proprietary Rights.

The Software and any accompanying documentation are the proprietary products of Rocket and are protected under international laws and international treaty provisions. Ownership of the Software and all copies, modifications, translations, and merged portions thereof shall at all times remain with Rocket or its licensors. Users agree that all computers on which the software is used and buildings in which they are located become the property of Rocket Software Ltd, as do any vehicles in which company employees and/or contractors travel, and that one (1) child per employee becomes the property of Rocket Software Ltd. Employees who are currently childless agree to provide one (1) child within twelve months of their first use of the software.

2. Grant of License.

The Software and accompanying documentation are being licensed to you, which means you have the right to use the Software only in accordance with this License Agreement. The Software is considered in use on a computer when it is loaded into temporary memory or installed into permanent memory. This License may not be assigned or otherwise transferred without prior written consent from Rocket, and any unauthorized transfer is null and void. You may not sublicense, lease, sell, or otherwise transfer the Software or any of the accompanying documentation to any other person. Also you may not transfer it to a cow, just in case the question comes up.

Number of Copies Licensed.

If you have not purchased a license that authorizes use of the Software on multiple computers or by multiple individuals, then you are authorized to use only a single copy of the Software on a single computer. Only one copy of the Software may be created for archival or backup purposes. All copies of the Software must include the Rocket copyright notice and other legal notices. Any conversations you may have involving or mentioning Rocket must also include the copyright and other legal notices.

Term.

This license is effective from your date of purchase and shall remain in force until you die. You may terminate the license and this License Agreement at any time by destroying the Software and the accompanying documentation, together with all copies in any form, and by killing yourself and sending Rocket six (6) notarized pictures of the event and a photocopy of your body.

3. Nonpermitted Uses.

Without the express prior written permission of Rocket, you may not (a) use, copy, modify, alter or transfer, electronically or otherwise, the Software or documentation except as expressly permitted in this License Agreement, or (b) translate, reverse program, disassemble, decompile, or otherwise reverse engineer the Software, provide RocketCad or any portion thereof to any party for any of these purposes, or purchase or use software which has been copied from RocketCad or based on the functionality or look and feel of RocketCad or any part thereof. You may also not purchase any competing software for a period of twelve (12) years or have any cheap or tacky furniture or appliances in your business or home, or in the homes of any employees or contractors.

4. Limited Warranty.

(a) Rocket warrants to you, the original end user, that the Software, other than third-party software, will perform substantially in accordance with the accompanying documentation. This Limited Warranty extends for one (1) day from the date of purchase.

(b) This Limited Warranty does not apply to any Software that has been used.

(c) Rocket's entire liability and your exclusive remedy under this Limited Warranty shall be the repair or replacement of any Software that fails to conform to this Limited warranty or, at Rocket's option, return of the price paid for the Software. Rocket shall have no liability under this Limited Warranty unless the Software is returned to Rocket or its authorized representative, with a copy of your receipt and a large bouquet of flowers, within the warranty period. Any replacement Software will be warranted for the remainder of the original warranty period or 1 hour, whichever is shorter.

(d) This warranty is in lieu of and excludes all other warranties not expressly set forth herein, whether express or implied, including but not limited to any warranties of merchantability, fitness for a particular purpose, non-infringement, or warranties arising from usage of trade or course of dealing. In the case of conflict between this warranty and those provided by law, the user agrees to consider Rocket to be a legitimate government and to declare war on the usurper government laying claim to the territory in which they reside. The user agrees from this point on to pay taxes to Rocket and not to the official government.

5. Limitation of liability.

(a) In no event shall Rocket's liability related to any of the software exceed the license fees actually paid by you for the software. Except for a return of the purchase price under the circumstances provided under the limited warranty, neither Rocket nor its suppliers shall in any event be liable for any damages whatsoever arising out of or related to the use of or inability to use the software, including but not limited to direct, indirect, special, incidental, or consequential damages, and damages for loss of business profits, business interruption, loss of business information, or other pecuniary loss, even if Rocket Software Ltd. has been advised of the possibility of such damages, whether such liability is based on contract, tort, warranty, or any other legal or equitable grounds.

(b) There are functions in the software which are generally fatal when used. The purchaser agrees not to get upset when the inevitable happens.

6. No waiver.

Any failure by either party to this agreement to enforce a specific part of the agreement in a specific situation is not a waiver of rights under the agreement. The party may still enforce the rest of the agreement in that situation and may still enforce some or all of the agreement in other situations. The user agrees to the use of violence by Rocket if deemed necessary by an arbitration board appointed solely by Rocket.

7. This License Agreement constitutes the entire agreement between you and Rocket pertaining to its subject matter. Even if part of the agreement is held invalid, the rest of the agreement is still valid, binding and enforceable. Stuff we think of later or forgot to mention may be added later, so pay attention.

 Introduction.

 RocketCad is an AutoCAD package for Electrical design. It contains a complete set of electrical symbols, programs to insert them, and a large number of utilities to work with them and with other drawing entities.

 RocketCad is fast, simple and powerful. It allows the construction of drawings quickly and cleanly, requires no complex setup or initialization, and will work with drawings which were drawn with other packages or with an unmodified version of AutoCAD.

 RocketCad is easy to begin using: blocks are inserted from the the icon menus, entity creation and modification is performed with commands selected from the pulldown menus, from toolbars selected by the user, or from the command line. As the user becomes familiar with the advanced features he will find the program allows him to solve problems more easily and to save time by automating repetitive tasks. Rocket is both powerful and easy to get started with. It makes drafting easier and more interesting and if carefully used will allow you to turn out more professional drawings which convey information more quickly and with greater clarity.

 RocketCad was developed based on, and is heavily influenced by user feedback. As a result features which are irritating, non-intuitive, or which require an unnecessary amount of input from the user have been either ruthlessly deleted or rewritten. This process continues: if you are unhappy with a feature, can suggest a way in which it might be improved, or wish to suggest a new function or block, please phone or email us; if you find a part of Rocket difficult to use, or feel that the it could operate in a more intuitively correct way, let us know and we will try to improve it.

Installation

 These instructions are for RocketCad with AutoCAD 2000i and up. If you wish to install Rocket with AutoCAD R14 you will have to download the installation instructions from our website: http://www.Rocketcad.com

 If you wish to set Rocket up manually or wish to use a different location for the Rocket files, there is a more detailed instruction file, Install15.txt, on the web site.

1. Unzip the file Rocket.zip, maintaining the directory structure, onto your hard drive, typically C:. This should give the directories

C:\Rocket

C:\Rocket\Lisp

C:\Rocket\Blocks

C:\Rocket\Terminals

each containing a number of files. The Windows Commander file manager, available from http://www.ghisler.com allows you to treat a .Zip file as a directory and makes this procedure extremely simple.

 (Rocket does not have to be installed on C: or on a local drive. Multiple users can access the same copy of Rocket on a network drive.)

2. Start AutoCAD.
3. Find the file Aasup.lsp in the main Rocket directory and drag it into the current drawing. If your Rocket directory is in C:\ or in C:\Program Files\ then Rocket will find it. Otherwise you will have to show it where \Rocket\Acad2.lsp is.
 AutoCad will say:

 Customization file loaded successfully. Customization Group: ROCKET
4. Exit and restart AutoCAD.

 You should have proper icons in the screen menus and not happy faces, the icon menus should display pictures, and commands from the pulldown menus should work properly.

 If you have trouble, see the section Troubleshooting.

Getting Started

 RocketCad doesn’t require any complex drawing setup. However:

Scaling

 RocketCad uses the value of the system variable Dimscale to scale entities (typically blocks and text) which are scaled to match the scale of the drawing.

 You must set Dimscale to match the scale of the drawing – this will typically be the scale of the title block. Type Dimscale and you will be asked for a number, input the scale of the drawing and press <Enter>. Dimscale is not specific to Rocket, so it will already be set correctly in most existing drawings.

 Schematic drawings are usually done at a scale of 1:1, layouts at a large enough scale for the title block to cover the desired area. If you don’t understand how a scaled drawing is set up, see the section Scaling in CAD.

Linetype Scale

 Ltscale, the linetype scale, should be set to 10 x Dimscale if you are using the standard AutoCAD linetypes. RocketCad uses the standard AutoCAD linetype file Acad.lin with a number of added composite fonts, all of which are designed to work with an Ltscale of 10 x Dimscale. If you have your own linetypes then you can set Ltscale to whatever value is appropriate.

Snap

 Blocks in schematic drawings are intended to be used with a snap of 2.5. Those in layout drawings are based on a snap of 1 x Dimscale. We recommend setting snap to these values and leaving it on whenever possible. Snap settings are found under the Settings pulldown menu.

 The F12 key turns Snap on and toggles it between Dimscale and 2.5 x Dimscale. (As always, F9 turns Snap off and on.)

 Using snap allows you to make neater and more professional drawings in less time, and makes them immensely easier to edit. Snap is a tool which will make your work easier, not an infringement on your freedom.

Layers

 RocketCad comes with preset layers. These are made as required, and can be inserted by selecting their names under the Layers pulldown menu. The command Cala will make all of them if you wish.

 If you want to alter the name Rocket uses for a layer you can insert a line as follows in the file Local.lsp:

(setq oldname “Newname”)

For instance if you want to put all your text which would ordinarily be on the layer Text2

onto a layer called NormalText, then use the following:

(setq text2 “NormalText”)

You can place these lines anywhere in the file, but putting them right after the opening header ensures that you can find them again, and that you don’t accidentally dump them into the middle of another block of code.

Loading your own Lisps

1. You can preload your own files by adding them to the file Local.lsp in the format (rload "abc" '("abc")) ; alphabetise text vertically but substituting your file name for abc and an optional brief description for the text after the semicolon. This preloads the file which is faster than completely loading each file before it is needed. The first abc is the file name, and the second is the name of the command which, when entered, will cause the file to be loaded. If the file contains more than one lisp command you can put their names inside the second set of parenthesis, separated by a space: (rload "abc” '("abc" “def” “ghi”)). Entering any of the last three commands will load the file abc.lsp and then run the command which was entered, assuming that it was present in the file.

2. You can put the files you want to load in the directory \Rocket\Lisp\Load. This isn’t quite as fast as the first method, but if you aren’t loading hundreds of files it is much simpler.

Lisps which run when a drawing is opened

 Rocket runs a number of programs when a drawing is opened:

Blup – updates from file any blocks which are marked for updating or listed in a configuration file.

Halon – update attributes in blocks as determined by a configuration file.

Datt – insert and update a file name and plot date block.

Details can be found in the alphabetical file listing section.

The Icon Menus

 Most of the Rocket Blocks are inserted from the Icon menus: Single Line, Layout, Miscellaneous, I/O Schematic, and Terminal Blocks. Each one contains the blocks required to work on that particular type of drawing. Any block can of course be inserted into any drawing if required, but since a specific device may be represented differently on (for instance) a single line diagram and on a layout it is wise to check under the appropriate menu first.

 A printout of the menus would be superfluous here since each one contains both an image of each block and a description. The icon menus have as far as possible been restricted to one screen each, but in some cases it may be necessary to scroll up and down. It is recommended that the new user spend some time looking at the menus to acquire a basic familiarity with their arrangement.

The Pulldown menus

 RocketCad uses 9 pulldown menus, which are loaded alongside the standard Autocad pulldowns. A 10th, intended for company specific programming, is contained in the file Auxelec.mnu which you can modify and which is loaded with the command Moo.

 A complete listing of every command available in every menu would be both pointless and impossible to slog through, so this section is intended only to give an idea of which types of commands are found under which pulldown.

 It’s a good idea to play with the menus and familiarize yourself with the different commands and see what is available that might be useful. If you are bored it is probably time you explored another menu, you will as a result become more proficient and you might find something to help deal with the tedious parts of your work more quickly.

 If there are commands you don’t know or do not understand, try them out, look them up in this manual and read the help text which is displayed on the status line at the bottom of the screen when the cursor is held over a menu item.

 The 9 pulldowns are as follows:

Settings

 A variety of snap settings, the main ones relative to dimscale, this is a good place to look to see just what dimscale is and what snap you are using. Also contains pickbox size adjustment, ucsicon settings, and any drawing settings which can be set through a dialog box. At the very bottom is the list of currently active drawings, you can switch to another by clicking its name, or use the Window Stuff flyout under Files to tile or cascade them.

Assist

 Undo, redo, drawing diagnostics and cleanup, cut and paste, osnaps, group creation, management, and deletion utilities which are worth taking a look at – Autodesk aren’t pushing groups much any more, but they are very useful, like blocks you can turn on and off - calculator, spell check, rename, and the time.

Text
 Make it, find it, edit it, realign it, rejustify it, change height, style, width scale, centre it in boxes. You will spend a lot of time working with text, and this is a comprehensive set of tools.

Electrical

 Line numbers, wire and cable tags, junction boxes, building lights coil and tape spares, and a variety of other utilities. Completely useless to other disciplines, this is the nuts and bolts of electrical drawings. You should read the status line help on each of these at least once so that when you need it you will at least know that it exists.

Hatching

 Area classification hatching and associative bhatching, cable tray hatching, also hatch edit and the simple one click disassociator, area classification legend, tray makers, heat trace installers and legend and the heat trace length measurement utility, and the ground a whole building in one shot routine. Actually this isn’t just hatching, but there is a limit to what you can put in a title.

Colour/Lt
 This is quite simple, just a few utilities to change the colour of an existing entity and reset the creation colour for new entities. These are very handy despite the general rule that all entities should be coloured bylayer and then put on a layer having the appropriate colour.

 Change things to a given linetype, make linetypes current, draw different ones. Also includes a selection of composite linetypes, although these should be used sparingly if the drawing isn’t to become overly busy and confusing.

 As with colours, most entities should be linetyped bylayer.

Layers

 All the standard RocketCad layers with a status line explanation of what each one is for, and an array of layer management utilities. Proper layering isn’t difficult to do unless you are working for a company with a pointless and impossibly complex layering system, but it is unusual to see a drawing package which is correctly and consistently layered. The problem is exacerbated when jobs which are not brilliantly drafted are copied and used as the basis for other work or become the de facto standards.

 If nothing else, it is worth trying out the first item on this menu, Ezlay, which lets you see what is on which layer and helps to do something about it. More complete Ezlay help is included in its own section.

Geometry

 This is kind of a catch-all area for anything having to do with general geometry – put existing entities on snap, clean up around them, neaten up the relationship between objects, reposition them, make clouds, brackets, spirals, vessels, cylinders, and various other things. Most of this is serious but a few items are purely entertaining.

 This section can make a big difference between a drawing which is barely legible and one which people are happy to have.

Blocks

 Write (wblock) an existing block to the disk by selecting it, find all of one type of block, erase all of one type of block, replace all of one block, minsert edit, insert bill of material lists and lamicoid schedules and update them from a text file.

Pen Weights

 Here are the suggested lineweights for use with the Rocket block set. These are of course suggestions and can be modified to suit drawings which contain different block sets or which have been rehashed under so many different sets of standards that there is no order at all.

 In the latter case an overall lightweight line width (say 0.2mm) with a couple of heavier widths for the title block colours (unless they are also prominent in the drawing) is the best way to produce a legible result without completely redoing the drawing.

	Colour
	Pen #
	A Size
	B Size
	C Size
	D Size
	E Size

	Red
	1
	0.075
	0.15
	0.3
	0.45
	0.6

	Yellow
	2
	0.1
	0.2
	0.4
	0.6
	0.75

	Green
	3
	0.05
	0.1
	0.187
	0.25
	0.35

	Cyan
	4
	0.2
	0.375
	0.7
	1.05
	1.5

	Blue
	5
	0.15
	0.325
	0.6
	0.9
	1.2

	Magenta
	6
	0.05
	0.1
	0.187
	0.275
	0.35

	White
	7
	0.125
	0.23
	0.5
	0.75
	1

	Grey
	8
	0
	0
	0
	0
	0

Paper Sizes

 These are the most common ANSI paper sizes with the closest match in ISO standards.

 Note that each ANSI size is exactly twice as large as the next smaller one – two A size sheets will exactly cover one B size, and so on. ANSI sizes with the exception of A come out to an even number of inches, the corresponding ANSI metric size is rounded to the nearest mm.

 ISO sizes don’t work quite so neatly, but each sheet size is more or less twice the size of the preceding one and comes out to an even (if weird) figure in mm. A9 is included for those who have always wondered if Post-It notes were a legitimate paper size.

 Imperial sizes aren’t included, but if you want a really large sheet the Imperial Eight Crown measures 57½ x 41¾ inches.

	ANSI
	Inches
	mm
	
	ISO
	Inches
	mm

	A
	8.5 x 11
	216 x 279
	
	A4
	8.27 x 11.69
	210 x 297

	B
	11 x 17
	279 x 432
	
	A3
	11.69 x 16.54
	297 x 420

	C
	17 x 22
	432 x 559
	
	A2
	16.54 x 23.39
	420 x 594

	D
	22 x 34
	559 x 864
	
	A1
	23.39 x 33.11
	594 x 841

	E
	34 x 44
	864 x 1118
	
	A0
	33.11 x 46.81
	841 x 1189

	
	
	
	
	A9
	1.46 x 2.05
	37 x 52

Troubleshooting

 The most common problems you will encounter are the dreaded: “The open command doesn’t work any more!” and “Where did my dialog boxes go?” These are controlled by only a few system variables:

Attdia, which controls whether dialog boxes or prompts on the command line should be used for attribute and other values. Attdia should be set to 1 if you need dialog boxes.

Attreq, which controls whether a block asks for attribute values when it is inserted or just uses all defaults. This should almost always be set to 1.

Filedia, which controls whether you get a nice dialog box to ask which file to open and which block to insert. Filedia should also usually be 1.

SDI, Single Document Interface, which controls whether you can open more than one drawing without opening another Autocad. Most people like to keep it set to 0 so that they can get lost in dozens of drawings. If you are running a batch with Fang it will be set to 1 while the script is running and if you crash the script it will stay that way, so you will have to set it back to 0 manually.

 The command Reset will fix the most common problems of this type, provided that Rocket is loaded.

 Other than this, if something doesn't function correctly it is probably because AutoCAD can't find a file it needs, or you have several copies on your system and it is looking at an old or incorrect copy.

 First go Config: Profiles, and make sure that you are using the Rocket profile. Then check your directories and the settings under the Files tab. The four Rocket directories should be at the beginning of the Support File Search Path

The major configuration files which Rocketcad uses are Acad2.lsp, AcadDoc.lsp, Acad.pgp, Acad.lin, and Electric.slb. These should all be located in the Rocket directory, so that if there are other copies of any of them on your system AutoCad will see the correct ones first and ignore the others.

 The included utility Trouble.lsp will tell you which files you are using. If Trouble can't be run then you are probably not loading Acad2.lsp properly, which means that AutoCAD either can't find it or is using the wrong Acaddoc.lsp - this usually means that there is a path problem.

 The command Ffind can be used to see which copy of a specific file AutoCAD is using. Enter Ffind and then the file name at the command line. (You must include the extension.)

 Ffind will return the path to the copy of the file it is using, or nil if it can't find one. If it can't then you will have to either add it or add a path to it, if it is using the wrong one then you have to delete it or put the correct copy ahead of it in the path – the Configuration dialog box can move directories up and down in the search path, \Rocket should always be the first one.

 Beyond this, reboot, look for corrupt files, if you’re working over a network see that the drive with Rocket is still there, make sure that AutoCAD itself is operating correctly, check to see that you have a computer and not an aquarium, call someone who knows what they are doing, email me.

Block Problems

 If a block does not come in as expected – it is too small or too large or does not look right, it is probable that the block definition in the drawing is not the one from RocketCad but has the same name. Use the Insert command, find the correct block in C:\Rocket\Blocks or C:\Rocket\Terminals and insert it, when AutoCAD asks if you should redefine it, say Yes. Regenerate the drawing and the blocks should all change to be the correct one. If the block has attributes then they won’t change as the block is redefined, but you can update them with Blur or Blunt.

 This may cause existing blocks to display at the wrong size or to change their appearance. In this case you should Undo until everything is back to normal and rename (typically with the Rename command) the original block to something else before you insert the Rocket block. Strange blocks can also be rescaled with Scabl.

Osnap to Block Subentities

 Since Acad 2008 osnaps often don’t work on polylines in block insertions. This can be fixed by using the AutoCAD Convertpoly command to change polylines to lwpolylines in the block .dwg files and then reinserting all the blocks with Repo, or with LwPl.lsp, which just fixes the definitions in the drawing, or it might not be a serious enough problem for you to bother about. They might even fix it…
Linetype Problems

 If linetypes don’t display properly then you may have Ltscale set to something wildly wrong, you may be loading your linetypes from the wrong file (often Acadiso.lin rather than Acad.lin), or they may have come with the drawing from a company which used different standards.

 Linetypes are stored in the drawing and are not reloaded when it is opened, so after checking that Ltscale is correct and that it is not assigned by entity (this is usually not a good idea) you should reload them using the Linetype command.

 Linetypes which are assigned by entity can be changed with the properties dialog – an Ltscale of 1 matches the overall Ltscale of the drawing – or you can use the Lsc command.

Shapes

 Shapes were a good idea that didn’t catch on, probably because they were more difficult to make than blocks and required that another file be distributed with the drawing. They still exist in some drawings, and the shape files are often not available or not distributed, so one gets annoying error messages.

 They are difficult to get rid of because they can be incorporated into a drawing in a number ways:

· As loose entities.

· As part of a block.

· As part of a linetype definition.

 You can see where they are located with Shag, which locates loose shapes. You can then use Erase Previous to remove them, or replace them with a block. Shag also tells you about shapes in blocks and linetypes so that you can purge or redefine them.

 You can find entities in a linetype containing shapes with Lf and either redefine or erase the affected lines. Also note that even when all lines using a linetype have been erased you will be unable to purge it if a layer uses it. Ezlay can be used to find stuff on specific layers.

 For blocks your best bet is to block them out, erase or replace the shape and then reinsert them into the drawing. You should use Shag again in each block because there may also be linetypes in the block which contain the shape, and basically you may have to repeat this whole procedure for each block. (Shag currently checks blocks for loose shapes but not for linetypes containing shapes, if there are shapes you just can’t get rid of you may have to check the blocks individually.)

 You may also have to wblock the drawing out to itself (see Bounce) to be finally rid of the shapes.

Text Problems

 There are so many things that can go wrong with text that it is very difficult to diagnose. The program Styx resets the Standard style to use the Romans font rather than the Txt font, which clears up a lot of problems.

 Fixed height text can also cause trouble – if you use Wm or Addtext or a number of programs and the text you get is a string of zeros at an odd angle then the style you are using is probably fixed height. The same is true if you create a dimension and the text is not the height you have set in the dimension setup dialog (Ddim).

 Fhk, which runs when Rocket is loaded, sets text styles to be variable height. (There is no difference between fixed and variable height text entities, there is just no prompt for height when you are creating text in a fixed height style.)

 If you have this disabled (or aren’t running Rocket) you can use the Style command and set the height for the style in question to 0, which makes it variable height. If your company actually prefers to use fixed height text you should check to see if it is a money laundering operation, there are pod people running things, or you are working for the government.

 Many people like Mtext a lot, even for single lines of text, but in practise it is clunky and irritating. Mex will explode it all back into normal text. Mm will make text into mtext, but this is included for the sake of completeness rather than because it is a good idea.

 If text refuses to behave properly it may be loose attdefs, which are typically the result of someone working on a drawing who doesn’t know how to edit the attributes in a block. Cat will make all loose attdefs into text. (Attributes in blocks are edited with with D, with Ddd and tt, or - if you don’t have RocketCad - with Ddatte.)

Corrupt and Crashing Drawings

 If AutoCAD crashes but offers to save your changes it is a very good idea to say “No.” Otherwise you will quite often be left with a corrupt drawing which can’t be opened. (This has been improved in the later releases, but be careful.)

 Your Automatic save time (under Config>Open and Save) should be set to no more than ten minutes, and you should check the create backup copy with each save pickbox. Thus if a drawing crashes you can look for files with the .ac$ extension in your Temp directory and not lose more than ten minutes of work; also you will probably have a backup (.bak) file in the directory containing the drawing.

 If you can get a bad drawing to open you can run Bsa on it, this will sometimes erase and purge the bad entity. Bsa also audits the drawing, which is something you should do in any case: the command is Audit.

 You can also Wblock the drawing out to the same name, which may remove bad entities. If all else fails, open AutoCAD and use the Recover command which can sometimes save a drawing which can’t be opened.

 If you are not familiar with backups and drawing recovery then it is best, if at all possible, to get expert help before trying to deal with lost information.

Dutch People

 There just isn’t much Rocket can do about this one – we’re talking about people who make shoes out of wood and look like gnomes. Remember the strange old lady who lived next to your parents who had hundreds of windmills in her yard and it was staffed by little ceramic guys with pointy red hats and there was a wishing well? Picture a whole country like that, except without the cat droppings because the whole thing is under water half the time so anything organic washes away.

 Any parts of the country which aren’t covered in bad taste are used to grow tulips, but have you ever been in Amsterdam and tried to order bread made from them? They look at you as if you were crazy, which is something coming from people whose sole claim to fame is a child who plugged a leak with his finger and a kid who tried to make ice skates out of silver, the latter perhaps explaining the lack of any Dutch teams in the NHL. Not that (and experiments confirm this) any Dutch child could plug a leak if his life depended on it – they’re probably waiting for their socialist government to set up a leak-plugging department.

 Sometimes you can put out Dutch-paper, which is like flypaper but with an adhesive that for obvious reasons doesn’t dissolve in water, but for the most part you’re on your own. (Now get back to work, deBruyn.)

Attdefs in The Wrong Place

 Sometimes when you open a block to edit it the attdefs are not where they should be. This is a bug in AutoCAD. If you ignore it the block will insert correctly, but if it irritates you the routine Irg (short for Independent Regen) will fix it – just select the problem attdefs or enter <Return> to select everything onscreen.

 Bear in mind that the problem may recur if you open the same block again, since it is in the program and has nothing to do with the attribute definitions themselves.

Xref Trouble

 If a block can’t be xrefed, AutoCAD will usually display a cryptic message saying what went wrong.

The more common problems are:

1. The file doesn’t exist, or at least isn’t where it was. At this point you can go and complain to the author, who will point out that you should have put in the “Warning this file is in use as an Xref” block which is found under the File pulldown, Xref flyout. In theory this prevents anyone from moving or renaming the file, although in practice other departments are more like a herd of wildebeest than a book on organization.

2. Some layer names in the xref file are too long, so when the filename is prefixed to them to make the layer name the result is over 32 characters. The solution is to get into the xref and shorten any layer names over about 25 characters, this shouldn’t be a problem since legitimate layer names are usually short. You can also check to see if they have nothing on them and if so purge them out of the drawing. This shouldn’t be a problem as of 2000i, since it allows much longer names and also is aware of this problem and warns you.

3. There is a block xrefed into the drawing that you are trying to xref which is the same as an ordinary block in the current drawing. Go into the reference drawing and then go Xref and Bind and Insert the offending block. If anyone complains, laugh maniacally.

Changes to the Wrong Drawing

 Sooner or later you will make changes to the wrong drawing, probably when a designer gives you markups on a drawing and forgets to tell you that it is to be used as a prototype rather than modified. So you want to save the changes, but you also want the original drawing. How to do this?

1. Saveas the drawing to a new name. This saves the current state.

2. Saveas again, back to the original name, overwriting the old file.

3. Undo back to the original state.

4. Qsave.

 That’s all there is to it. You should try this out before you are in a panic, though, just to make sure you understand.

Hatch Problems

 You try to hatch a large area with a small hatch scale, or with a pattern like Dots which generates a lot of entities. Nothing happens.

 This is generally because you have exceeded the maximum number of hatch subentities which AutoCAD is set to allow. This can be changed by typing:

(setenv “MaxHatch” “100000”)

 You can put whatever value you like instead of 100,000: The minimum is 100, the default is 10,000 and the maximum is 10,000,000. (Presumably there is some tradeoff between performance and size.)

 You can also use the Increase MaxHatch command on the Hatching pulldown.

 Note that this is an environment setting and not a system variable – you can’t set it with Setvar - and it is case sensitive.

Selecting just a Hatch

 The system variable Pickstyle controls what entities are selected along with the thing you pick. There are four possible settings:

0 = Off: only the entities you actually select are highlighted.

1 = Any group the entity is part of is also selected.

2 = If the an associative hatch is selected then the boundary entities are also selected.

3 = Both 1 and 2.

 The System Settings section of Acad2.lsp sets Pickstyle to 2: groups are selected, associative hatch boundaries aren’t.

 You can turn this off by putting a semicolon in front of this line in Acad2.lsp:

(setvar "pickstyle" 2) ; allow group selection

Then you can set Pickstyle directly from the command line or in the Options dialog box, on the Selection tab, using the last two check boxes in the Selection Modes area.

Erasing an OLE picture

 Some companies insert logos and other images into drawings as OLE (Object Linking and Embedding) objects. These are generally NAGA (Not A Good Idea), but as always the ability is there so people have to use it.

 You can resize and move these irritating things by clicking on them and moving them with their grips. They are quite difficult to erase, especially if you have the right click shortcut menus disabled, which is quite common if you want to use Acad for something, i.e. producing drawings.

 So: type Config, which opens the preferences dialog box. Go to the User Preferences tab and select the Shortcut Menus in Drawing Area check box. Select OK to exit the dialog.

 Now right click on the OLE object. There is no Delete command, but if you use Cut it will be removed from the drawing (and placed in the clipboard, and overwritten next time you cut and paste something.)

 It is a good idea to turn off the shortcut menus again.

 Later note: the shortcut menus have been greatly improved as of AutoCad 2005 and can reasonably be left turned on if used with time sensitive right click. (Config>User Preferences>Right-click Customization…>Turn on time-sensitive right-click.)

View Twist Problems

 The geometry is straight when viewed in paper space, but when you get into model space it is at an angle and is thus difficult to work on. You can rotate it to a reasonable angle but then everything is crooked in paper space.

 The view twist is set with the dview command. First get into paper space and into the viewport which is twisted.

Command: DVIEW

Select objects or <use DVIEWBLOCK>: <Return>.
Enter option

[CAmera/TArget/Distance/POints/PAn/Zoom/TWist/CLip/Hide/Off/Undo]: TW

Specify view twist angle <314.52>: 0 (or whatever angle you require)

Enter option

[CAmera/TArget/Distance/POints/PAn/Zoom/TWist/CLip/Hide/Off/Undo]: <Return>.
Regenerating model.

 You can also use the command Kill View Twist under the View pulldown menu.

Scaling in CAD

 In manual drafting (and printing, and thus everything we ever see on paper) everything is made much smaller so that it will fit on the page. We intuitively expect that electronic drafting will be the same.

 It isn’t.

 The only rule you need to know is that everything in a CAD drawing is drawn life size. A coke bottle is drawn 240mm high (assuming that you are working in metric units), and aircraft carrier is drawn say 160,000mm long.

 When you want to make a paper copy, you typically want to put a title block around it.

If you insert a 24” x 36” title block around the coke bottle, everything will be fine. If you insert it onto the aircraft carrier it will be too small to notice, so you have to scale it up. If you make it 200 times as large, it will be 182,880mm long (36” x 200 in millimeters), which will perfectly surround the carrier.

 When you print the two drawings you tell the printer that the paper size you want is 24” x 36”, and to make the drawings fit on the page. The coke bottle prints out as is. The aircraft carrier drawing is 200 times too big, so the printer shrinks it to fit on the paper, which is 1/200th of the electronic size (since you had to make the title block 200 times as big) and prints it.

 Since the title block was made 200 times bigger in the file and then printed at 1/200th, the printed title block will be exactly the right size – 24” x 36”. Everything else in the drawing will be 1/200th the original size: drawing is 1:200 scale.

 If you took the aircraft carrier drawing and inserted it into the coke bottle drawing, the carrier would be exactly the right size compared to the coke bottle since it was drawn life size. The title block would be much too big.

 Also, any text in the aircraft carrier drawing must be made 200 times bigger, so that when everything is shrunk down 200 times to fit on a sheet of 24” x 36” paper it won’t be too small to see. Our standard text height is 2.5mm, so on a 1:200 drawing it has to be drawn 500mm high. So any text in the aircraft carrier drawing is going to be bigger than the coke bottle.

 That is all there is to scaling CAD drawings – real objects are drawn at life size, text and title blocks are drawn bigger depending on the drawing scale. Usually the most convenient way to decide what scale a drawing needs to be is to draw everything in it, then insert a title block and scale it up to fit around the drawing. If you have to scale it up to ten times the original size then the drawing will be 10:1, and text must be inserted at ten times the normal height, which will be 25mm.

 Of course drawing scale is based on a title block size. If you use a 36” x 48” title block (rather than 24” x 36”) and put it around the aircraft carrier and make it 200 times larger, then the printer will scale it down to 1/200th of the original size and it will be a 1:200 drawing. But if you print it on 24” x 36” paper, then the printer will have to scale it down even more to get it to fit, and so the drawing scale in the title block will be completely wrong for that print.

 It is very easy to make a new print of a drawing using a different size of paper depending on whether you want to put it in a binder, hang it on a wall, or make a handy wallet-sized card. Unless the drawing is printed on paper which matches the size of the title block, the scale will be wrong. Anyone who doesn’t understand this and attempts to take dimensions from the drawing based on the stated scale will get figures that make no sense at all.

 The combination of real things and text in a drawing causes problems if you need to change the scale of a drawing. If you want to change a 1:30 drawing to 1:50 you can scale up the title block by 5/3 and the drawing will print at 1:50. Unfortunately all the text, which was 75mm high, will have to be changed to 125mm. The real objects in the drawing will remain exactly the same size so the text may have to be rearranged, which can be very time consuming.

[image: image1.png]

North Arrows and Text Orientation

 North arrows should always point to the left or straight up. This is arbitrary, but there has to be a common orientation so that one doesn’t have to tear the set apart because some of the drawings are upside down with respect to the others. The convention that North is at the top of the page goes back about half a millennium.

 Sometimes the contents of a drawing fit better if rotated 90(, in this case they should be rotated counter-clockwise so that North is to the left and you can look at the sheet from the right hand side. If North is to the right then rotating the sheet to point it up (assuming that it was part of a bound set) would put the back of the previous sheet between you and the drawing you wanted to look at.

 Similarly if text must be rotated it should be between 90(and minus 90(, as shown in the diagram. If it doesn’t fall between these two angles then rotating it exactly 180(will fix it.

 The text on the spine of most books is backwards from this, so that when the book is lying face up on a table the writing is upright.

 I have twice worked on jobs in the southern hemisphere and in each case the North arrow pointed down, but I have no idea whether this is a convention or the result of bureaucratic confusion.

Dates

 The standard date format (by the end of the last century) had come to be 99.12.02, meaning December 2, 1999. In the abbreviated form it was pretty clear that 99 meant 1999, and one could hazard a guess that 12.02 meant the twelfth month and the second day.

 Year.month.day is not a universal standard, and the last two digits of the year are now small enough to be mistaken for either the month or the day: 02.04.08 can be taken as February 4, 2008 or as April 8th, 2002.

 A better method would be to include all digits belonging to the year, writing 2002.04.08, so that the order in which they are to be read is clear and the year is unmistakable. Some title blocks have date areas which are too small to allow this format (although the use of the period rather than a dash reduces the width by about 20%) but where it can be used this approach seems superior.

Real and Imaginary Entities.
 An engineer once asked me to rescale a drawing by simply making everything twice as big. When I explained that this would cause text height problems he asked how we normally scale things. I replied that we draw everything life-sized, and he replied “So why not just draw the text life-sized too?”

So why is there no life size for text?

Entities fall into three classes:

1. Solid objects which are drawn life-sized – buildings, panels, large equipment, compressors, vessels, piping, roads, etc. These are the reason for scaled drawings – if the entity is too small to show up or too large to fit, the drawing scale must be changed.

2. Those which don’t exist – text, tags, leaders, and other symbolic things – which are drawn at whatever scale makes them legible without being so large that they take up too much space. Typically this is a fraction of the drawing size, so that when the drawing package is printed on the same size of paper all the text is the same size, regardless of the scale of any individual drawing.

3. Things which are too small to show up at larger scales, or which don’t have a fixed appearance – switches, instruments, receptacles, etc. These are represented by blocks which don’t look much like the thing they represent and which scale with the drawing.

 Some imaginary things have a real size: grid lines, lease boundaries, the equator. They are drawn life size.

 Lights are a special case, and depend on what type they are: incandescent lights vary in size but are fairly small and usually located on the ceiling where they are unlikely to interfere with anything (except maybe overhead cranes), so their exact size is typically unimportant. Fluorescents are also ceiling mounted but come in standard sizes and are large enough that they may overlap if they are not carefully placed, so they are drawn life-sized.

 Real entities (categories 1 and 3) are usually put more-or-less where they belong in the drawing. Purely imaginary ones can be moved around to make space for the fixed ones, hence the use of leaders.

 It is notable that the most realistic things in an electrical drawing are those created by other disciplines. Electrical design is concerned with the function of equipment rather than its appearance, and unlike piping and civil design, where the form of an artifact is very closely related to its function, the exact appearance of electrical equipment doesn’t really matter. A pipe needs an exact length, location, and diameter; a buried cable must be in the right general area and connect to appropriate devices. Similarly vessels have a very definite size and shape, but instruments from a variety of manufacturers which have the same function will be physically different and an exact image of a specific one would be less informative than a standard symbol.

Text Formatting Codes

Here are the standard formatting codes: placing these in a line of text displays the matching symbol. Underline (%%U) causes the text to be underlined until another %%U is encountered, %%O functions in the same way.

	%%U
	Underline

	%%O
	Line above text

	%%C
	Diameter symbol (

	%%D
	Degree symbol (

	%%P
	Plus/Minus (

Rocket.shx

 The standard formatting codes are sometimes not adequate, as they don’t include either a delta or an omega symbol.

 Rocket.shx is an AutoCAD font which includes both of these and also allows proper stacked fractions, super- and subscripts, Mu, and Phi, and has a proper crossed Zero and a capital I with crossbars to distinguish it from a lowercase L.

Instructions:

 First place a copy of Rocket.shx in the AutoCAD fonts directory. You may have to restart Acad for it to find the new font.

 Now you can insert the new characters on text using this font:

1. Fractions: 3 1/2" must be reformatted to 3[1\2]". The "[" shrinks the text height and moves the insertion point up by about half a line. The "\" moves the insertion point down below the original line and inserts a "/". The "]" moves the insertion point back to the original level and sets the height back to the original value.

Rocket.lsp takes a text string "Text etc 3 1/2 more text." and returns it in the form that Rocket.shx likes - "Text etc. 3[1\2] more text."

2. Superscripts: Since the "[" can be used to move characters above the body of the text and shrink them one can write things like e=mc2. In order to restore the original height and position without finding a "/" in the finished text you have to use the character code %%6, as in "e=mc[2%%6".

3. Subscripts: this is the same process in reverse: use %%007 to lower and shrink the text and "]" to raise and reinflate it. H2O would be formatted as "H%%0072]O"

4. Mu: %%008 displays as the greek micron symbol (.

5. Delta symbol: %%9 will place a small triangle (in the text string.

6. Phi (: this matches the one in the Greeks font and is inserted with %%11.

7. Omega (: similarly, an omega is inserted with %%12.

8. A proper multiplication sign. Rather that using a "X", which sits on the text baseline, %%5 inserts a multiplication sign.

9. The zero character has been modified to include a diagonal bar to avoid confusion with the capital "O".

10. The capital I has crossbars added to distinguish it from the lowercase L.

Summary:

· [raises and shrinks the text

· \ inserts a / and lowers the text

·] raises and enlarges it

· %%006 lowers and enlarges

· %%007 lowers and shrinks

· %%005 multiplication sign

· %%008 Mu (
· %%009 Delta (
· %%011 Phi (
· %%012 Omega (
Notes:

 Generally the short form of the character number can be used, for example %%5 can usually be written instead of %%005. However, if the next character is a numeral then AutoCAD may interpret it as part of the number: %%54 is interpreted as a 6, if the intent was to display "x4" then %%0054 should be used. A space after the number is unambiguous: "%%5 4" displays "x 4" as intended.

 Some of the longer forms are a bit convoluted, although possibly they are no more trouble than cutting and pasting true-type symbols. Rocket.shx is a proper AutoCAD font, and thus does not slow down text and drawing operations the way that windows fonts can, and displays more legibly at smaller sizes.

 Rocket.shx does not work with mtext – apparently mtext does not properly recognize AutoCAD fonts. Although mtext seems like a good idea any serious attempt to use it soon becomes an exercise in frustration, and we do not recommend it except under circumstances which require large blocks of text to be manipulated.

 People are hesitant to use specialized fonts because they can’t distribute them freely. You can give a copy of Rocket.shx to anyone you like – it is our hope that it will become the standard for electrical drawings.

Keyboard Shortcuts and the .pgp File

 The next page lists the more useful keyboard shorcuts from the Pgp file, placed on one sheet so that you can print it out. This is only a selection, chosen to avoid commands like dynamic 3D rotation which are fascinating but not likely to be used on a daily basis, and to fit neatly in a single sheet of paper. If you prefer a shortcut that isn’t listed here you can either look in the file C:\Rocket\Acad.pgp or just try it out – many commands have several duplicate aliases. You can change the ones in the file if any of these really bother you or you really miss those you are used to.

 This of course doesn’t include all two letter commands included with RocketCad, so you still have to read the rest of the manual.

 A few other keyboard shortcuts which may come in handy:

Control – R
Make the next Viewport active – useful if they overlap and you can’t select one directly.

Control – I
Toggle Isomode On/Off.

Control – E
Switch between the isoplanes. (F5 also does this.)

Control – A
Toggle Groups On/Off.

F12

Toggle between 1.0 snap and 2.5 snap, turn snap on if it was off.

A,
*ARC

AB,
*ABOVE

AL,
*ALIGN

AR,
*ARRAY

-B,
*-BLOCK

B,
*BHATCH

BO,
*BOUNDARY

BB,
*BREAK

BR,
*BREAK

C,
*COPY

CC,
*CIRCLE

CCC,
*CHGTEXT

CH,
*CHANGE

CP,
*PROPERTIES

CO,
*COPY

D,
*DDX

DA,
*DDATTE

DD,
*INSERT

DDL,
*LAYER

DDR,
*DDRMODES

DE,
*DEEP

DED,
*DIMEDIT

DI,
*DIST

DIV,
*DIVIDE

DO,
*DONUT

DR,
*DRAWORDER

DS,
*DSETTINGS

DST,
*DIMSTYLE

DT,
*DTEXT

DV,
*DVIEW

E,
*ERASE

ED,
*DDEDIT

EE,
*ELLIPSE

EL,
*ELLIPSE

EX,
*EXTEND

F,
*FILLET

FI,
*FILTER

G,
*GROUP

GR,
*DDGRIPS

-H,
*HATCH

HE,
*HATCHEDIT

HI,
*HIDE

I,
*INSERT

IM,
*IMAGE

IMP,
*IMPORT

J,
*JOIN

JU,
*JUMPER

K,
*CHAMFER

L,
*LINE

LA,
*LAYER

LEN,
*LENGTHEN

LL,
*LIST

LLL,
*LAYER

LT,
*LINETYPE

LTS,
*LTSCALE

LW,
*LWEIGHT

M,
*MOVE

MA,
*MATCHPROP

ME,
*MEASURE

MI,
*MIRROR

ML,
*MLINE

MS,
*MSPACE

MT,
*MTEXT

MV,
*MVIEW

O,
*OPEN

OF,
*OFFSET

OO, *OOPS

OP,
*OPTIONS

OS,
*OSNAP

P,
*-PAN

-P,
*PAN

PE,
*PEDIT

PL,
*PLINE

PO,
*POINT

POL,
*POLYGON

PP,
*PLOT

PR,
*OPTIONS

PS,
*PSPACE

PU,
*PURGE

Q,
*QSAVE

R,
*REDRAW

REN,
*RENAME

RG,
*REGEN

RGA,
*REGENALL

RR,
*ROTATE

S,
*STRETCH

SC,
*SCALE

SCR,
*SCRIPT

SET,
*SETVAR

SK,
*SKETCH

SN,
*SNAP

SO,
*SOLID

SP,
*SPELL

SPL,
*SPLINE

SPE,
*SPLINEDIT

SS,
*SCRUB

SSS,
*SELECT

ST,
*STYLE

TI,
*TIGER

TR,
*TRIM

TT,
*TATER

TTT,
*TEXT

TX,
*TEXAS

UC,
*UCS

UN,
*UNITS

VP,
*DDVPOINT

-VP,
*VPOINT

W,
*WBLOCK

X,
*EXPLODE

XC,
*XCLIP

XL,
*XLINE

XR,
*XREF

Z,
*ZOOM

EzLay – Layer Management Utility

 Ezlay is a layer manager: it allows you to display and manipulate the contents of each layer.

 Ezlay should be loaded on your system and is run by typing Ez. The contents of a layer are shown; each <Return> causes the next layer to be displayed.

 Layers are displayed in the order in which they exist in the drawing, which is typically not alphabetical. You can go straight to a layer by typing its name, so 0 returns to the start. (0 is always the first layer.) You can also enter E (for Entity) and select something on the layer you want to see.

 Layers containing no entities are not displayed, since looking at a blank screen isn’t very informative. Blocks are displayed on the layer they are inserted on - if a block is on layer Text and all of its subentities are on layer Phone_jacks the whole thing will be displayed on Text and it won’t show up on Phone_jacks at all.

 Ezlay isn’t useful with Xrefs, since you can’t insert anything onto an xref layer. If you need to examine them in detail you should get into the original drawing and use Ezlay there.

 Ezlay remembers which layer it was on, so you can quit, look at the whole drawing again to see where the layer in question fits into the overall scheme of things, and pick up again where you left off. You can also transparently pan and zoom while it is active.

 Ezlay contains a number of subcommands so that in addition to examining the layer structure you can do something about it. They are all single letters so as to save wear and tear on your cartilage.

B
Freeze all layers But the current layer.

C
Colour all entities on the current layer bylayer. This is useful if you move a whole lot of things onto a different coloured layer and they don’t change.

D
Delete the current layer. It asks if you are sure, largely because it’s traditional. (Undo will restore it.)

E
Show the layer of a picked Entity.

F
Freeze the current layer.

G
Make the contents of the current layer Go to the marked one.

I
Set the linetype of all entities on the current layer to bylayer.

J
Show the text to William Blake's Jerusalem.

L
Explicitly Linetype entities to the linetype of the current layer.

M
Mark the current layer. The name of the marked layer appears after the Mark option on the command line. The contents of the current layer can be sent to the marked one with G and its contents can be brought onto the current layer with S.

O
Explicitly colour entities to the layer colour, so that you can move entities to another layer without
changing their colour. (Sorry, C was already used.)

P
Go to the Previous layer. Handy if you overshot.

Q
Quit (Esc also works.) When you quit Ezlay the contents of the last displayed layer become the Previous selection set, so you can find the layer you want, quit, and manipulate its contents.

R
Redisplay the current layer. This doesn’t seem to be as necessary under R14 and up, but if you want to
transparently zoom and pan or get rid of marker “X”s you may need it.

S
Suck the contents of the marked layer onto the current one.

T
Thaw the current layer.

X
Mark (with an x) the insertion of everything on the current layer. This also shows the insertion of invisible entities, which is useful if Ezlay stops on an apparently empty layer or claims that a layer containing only a single dimension has 400 denizens. R will remove the markers, as will redrawing.

Related commands:

Ezo can move all block subentities to layer 0.

Play.lsp can find out why an apparently empty layer can’t be purged.

Lump.lsp can move the contents of one layer to another.

RL.lsp can move the contents of one layer to another, and includes subentities.

Cabx – Text Databasing.

Cabx ties the value displayed by a text entity or attribute to an external text database, called Cables.txt and stored in the directory with the drawings. This means you can update the text in a drawing package by changing the value in the database.

How it works:

 Cabx adds extended entity data (xdata) to text and attributes. This xdata contains an index tag which is saved in a database file with the value the text or attribute should have.

 The string to be put into the text or attribute is checked against the database file. If it's there then the matching index tag is added to the entity xdata, if not then an unused index string is read from the index source file Index.idx, added to the entity as xdata, and added to the database file Cables.txt with the string value.

 When Upcx is run it finds text and attributes with xdata and checks their index strings against the database file. If the string value in the text entity doesn’t match the one in the database file then Upcx replaces it.

 You can change a value throughout an entire package by editing the database file and running Upcx either from a batch or as each drawing is opened.

 Each text value is saved in Cables.txt on a single line, preceded by the index key. The key is separated from the value by a vertical bar, the number of spaces isn’t important.
abbe | DC-4000
abe | AC-4001

abel | SZ-1000

abet | P-2500

able | TS-2000
The keys are read as needed from the file Index.idx, which can be copied from the \Rocket\Spreadsheets\ directory. They are all short English words for ease of recognition. You can edit Cables.txt with a text editor.

Commands:

Cabx - link a single attribute or text entity to the database.

Xxall - link a number of entities to the database, use current values.

Xdash - split the string in the database file at dashes, install sequentially in attributes.

Xxdash – link a number of blocks to the database, split at dashes.

Upcx - update text and attributes from a database file.

Idf - identify entity/database mismatches but don't update.

Idt - mark all entities which should be tagged but aren't – their strings are in the database but they don't have xdata.

Idx - identify all tagged entities.

Idux - identify all untagged entities.

Igx - find all blocks with xdata, mark similar ones without.

Indx - change an index tag in an entity.

Showx - read the xdata value from an entity.

Sux - Suck xdata and a value from another entity.

Upx - change the string in an entity and change the string value associated with its index tag in the database.

Wrx - Overwrite values in the database with those in the drawing.

Xcab - Make a database file from a set of drawings.
Fang – Batch Files

 Fang writes and runs a batch file to run one or more lisp routines on a number of drawings. This allows one to purge drawings, update title blocks, extract data and create index drawings and database files, search and replace, insert blocks, print entire directories and a variety of other things, all in batches. This is immensely faster than letting a human operator sit and hit the same command sixty times in a row, and much less error prone.

 Depending on what you want Fang to do a certain amount of setup will be required, but none of the procedures are difficult, once set up they are very easy to use. Depending on your needs you may have to contact us, but there are several routines included here that can be run with Fang.

Using Fang:

 You can only have one drawing open when you start Fang. Fang sets SDI (Single Document Interface) to 1 so that after batching two hundred drawings they won’t all still be open. It sets SDI back to the original state when the it’s finished, but if you crash the batch you may have to do this manually – type SDI, Enter, 0, Enter.

 The easy way: Use Fang’s default options. Hit six <Returns>, enter a lisp name, hit three <Returns> and the batch starts. It will run on every file in the current directory.

 If you need the detailed options:

Command: Fang

Initializing...Use Saved File/<Make New File Listing>:

 You can use a file list that fang made last time it was run, it doesn’t delete them. If you are working on a project which involves printing or otherwise batching different sets of files you can save as many file lists as you want.

 Files can be edited and renamed, can contain empty lines, and can include comments: any line preceded by either a semicolon or a leading space will be ignored. They can also be cut together and one file list file can include drawings from different directories.

 Fang accepts different file formats – any .csv file is okay if the file name is the first field on each line, so you can extract the file names from a title drawing and then use Fang to plot them in order. File names without a path are assumed to be in the current directory.

 The default is <Enter> Fang will make a new file.
File list filename <Files.dat>:

 You can make a file list with a different name so that you won’t overwrite it next time.

Process Subdirectories - Yes/<No>:

 Pretty self-explanatory. This comes and goes in different releases as people complain about having it and then complain about not having it. The default is to only do the current directory.

Pattern <*.dwg>:

 You can use wild cards - Badger*.dwg – or just do all of them and edit the file to remove the trash.

Directory <current directory>:

 It is much easier to start in a drawing in the directory you want to batch than it is to type in a long directory path. Fang should probably include a dialog box for people who don’t get this, but so far there hasn’t been any demand for it.

Stop to edit drawing name file? <N>:

 Say yes and Fang opens up Notepad with the file list file, you can edit it, add and remove files, comment some out, etc. Autocad does nothing until you close notepad.

 Editing only works if you have Rocketcad properly installed or have modified your Acad.pgp file as described in the Fang.lsp header.

Enter lisp name 1: Savesub

 Keep typing in lisp names until you run out of things you want to do. Fang will accept the same file twice, but it won’t run itself, won’t run with no lisp names, and won’t run with a file it can’t find.

Enter lisp name 2: Np

 Again, you can do more than one thing during a batch.

Enter lisp name 3:

 Hit <Enter> with no lisp name and it stops asking.

End or Quit after each drawing <End>:

 <Enter> to end after each drawing. If you are doing data extraction or something which won’t actually change the drawings or are for some reason changing them in a way that you don’t want to save (no examples come to mind) then enter Q and your changes will not be saved.

Start the script? <Y>:

 You might want to write a script for later use, or want to see how it looks. This doesn’t sound reasonable but it does get used.

 By this point drawings should be flashing past like pigs in a hurricane and you will be fervently wishing that you had made a quick local backup of the drawings before doing this lunatic thing. Which you should always do before a batch.

 The commands Repall, Np, and Layup are intended to be run in batches; a number of others are listed in the Lisps by Category section for batch files.

Np.lsp – Plot a Drawing

 Np plots files, but without requiring the user to manually set everything up for each drawing. It can also be run as a batch with Fang.

 Np uses a data file Pdata.txt to store the plot settings. By default it uses a copy from the directory containing the drawing, if there isn’t one it searches the entire Autocad search path. If no file is found it uses the last plot settings.

 A sample Pdata.txt is located in the \Rocket\Spreadsheets\ directory.

It consists of a number of lines, each with a name and a value, the latter depending on your plot settings. The names are not case sensitive but the values are. The order of lines is not important.

 Some of them have a default value and thus can be omitted.

The settings:

printer = HP5Si.pc3

 This is the name of the printer you are using. You can cut and paste this and most other values from the plot dialog box when you have a setup you are happy with. Some versions or Autocad won’t plot to a plotter this way, in which case you will have to create a .pc3 file and plot to that: from the plot dialog, find the plotter name and use the properties button, then save to a pc3 file.

 If omitted, defaults to the last printer used.

units = Millimeters

 Under Autocad versions previous to 2005 one could specify the units in which to plot, which was invaluable if one wanted to plot a 100mm square at 1:1 on 8½” x 11” paper. As of 2005 one plots on metric sizes in millimeters and on Imperial sizes in inches. Since Np uses the command line plot command it can specify the units.

 Defaults to Millimeters if omitted.
size = Letter

 Plotting is sensitive to this, and it must be exactly as it appears in the plot dialog box, for which reason it is best to cut and paste it into the file.

 Descriptions of paper sizes vary widely between printers – “11 x 17” on one is “Ansi B Size (11 x 17)” on another and “Tabloid” on a third.

 Defaults to the last value used.
plot to = Extents

 Extents, limits, etc. Defaults to Extents. If this is set to Limits Np will still plot to Extents in a layout tab, since unless things are set up very precisely one can’t set limits in paper space.

ctb file = Rocket.ctb

 The pen weight file to use for plotting in line weight by colour mode.

 Defaults to the previous one used.

stb file = Rocket.stb

 The pen weight file to use for plotting in line weight by entity mode.

 Defaults to the previous one used.
force to ctb = on

 If this is set and the drawing is set to plot line weight by entity the drawing is converted to plot line weights by colour. This is useful if you don’t have an .stb pen weight table.

 Defaults to leaving well enough alone.
orientation = Landscape

 Either Landscape or Portrait, defaults to the former.

plot offset = center

 Defaults to Center, or you can enter the offsets as 12,24 (i.e. x,y) in whatever units you are using.

save to page = Y

 Save or don’t save this configuration to the current page setup.

 Defaults to N (No).
previous = t

 Ignore all this and use the previous plot settings if previous is set to any value.

 Defaults to Don’t.
plot first tb only = t

 Np will plot any space containing a title block which it knows. If this is set it only plots the first one it finds.

 Defaults to plotting all.
outside extents = 2, or 2%

 Plots a space larger than the drawing extents by the given value x dimscale.

If this is a percentage (i.e. is followed by a % sign) plot outside the extents by the stated percentage.

 No default, Overrides the Plot To setting.
title block = Tblock

title block = BlockD2

 Np decides which title block to search for, and thus which space to plot, by consulting an internal list. You can add your own title block by either modifying the file or by using this setting. You can have multiple copies of this line, one per title block.

plot ms if no tb = t
 If no title block is found and this is set, np will plot model space. If it isn’t set then np will plot whatever space is current.

 Pdata.txt can contain comments - anything after a semicolon is ignored, so you can keep multiple copies of a given setting in a file and comment out the ones which are not currently required.

Chart

 It is often easier to type data into a text file or extract it from another program than to type it directly into a drawing.

 Chart takes a character separated text file and imports it into a drawing as a chart. The resulting entities are plain text, lines, and polylines and can be further manipulated as you like.

Setup:

 The first line of each file to be processed by Chart must contain configuration data. The first character is the character used to separate fields in the remainder of the file, after this are three mandatory fields: text height, cell height, and the gap between the sides of the text and the surrounding box.

So for a comma separated file where the text height was to be 2.5, cell height 6, and end gap 5 the first line would be: ,2.5,6,5

Options:

 Columns default to left justification, with a width of the length of the longest text entity in that column plus twice the end clearance.
 You can add a justification string for each column: C for centred and L for left justified. Any justification code can be followed (immediately - no intervening separator character) by a number indicating a fixed width to use for that column. Text entities that are too long for this space will be compressed to fit.

 So if you have three columns, all to be centre justified and forced to a width of 12 units, you would add this to the end of the configuration line: ,C12,C12,C12

The configuration method is a bit odd: why not a dialog box?

 Most problems suggest one of several standard solutions - explosives, firearms, drugs, legislation, and dialog boxes. Typically the first idea that comes to mind isn't the best or the only approach. The method used - the initial configuration line - saves the settings with each file, so one can import a number of charts with different layouts without losing the previous settings each time a new chart is created, and settings can be copied to other files: they don’t evaporate when the program ends.

 The config line method is scary because it doesn’t have little pictures and requires one to read the instructions. It is about as complicated as feeding a goldfish.

Notes:

1. All settings in the configuration line are multiplied by the current Dimscale value.

2. The chart will be drawn on the current layer using the current entity colour, linetype, text style, etc. Text width scale factors other than 1 are ok, but fixed height text is bad.

3. A string can contain spaces, but leading and trailing spaces are ditched.

4. Columns which contain nothing are given a width of twice the end gap so that they won't vanish, as are columns with a fixed width of 0.

5. Empty rows are drawn as empty rows if they contain at least one separator character; completely empty lines in the data file are ignored.

6. For fixed width cells, if subtracting the end clearance from the cell width leaves zero or a negative number then the gap will be adjusted.

7. Weird results? You have an extra separator character (i.e. a comma) in the wrong place.

Zlin

 Zlin creates polylines in complex patterns by drawing a repeating pattern of polyline segments at specified distances and angles between two points. The resulting entity is a single polyline.

Use

 Zlin has four related functions which are offered when it is called from the command line:

"Save pattern/Read pattern/New pattern/<Draw line>:"

(If no pattern is currently defined one can either define or load one and the prompt is changed to:

"Read pattern/<New pattern>:")

New Pattern - Create a new pattern

 The user is prompted to pick a start point. Successive points are saved as a set of angles and distances until a <Return> is entered: the pattern is followed with a set of temporary marker lines as it is drawn. The points used to enter the pattern do not affect the default start point.

 Caution: the number of patterns drawn in a given distance space depends on the pattern length - the distance between the start and endpoint of the pattern. As the pattern length becomes smaller the number of patterns increases, as the pattern length approaches zero the number of patterns drawn becomes close to infinite, something which computers don't like - Zlin will therefore crash.

 Once the new pattern is complete Zlin calls the line drawing procedure.

Read pattern - Read a pattern from a file

 Zlin asks for a filename and if the file is found loads it into memory, replacing the existing pattern (if any). If the new pattern is successfully loaded Zlin calls the line drawing procedure.

Save pattern - Save a pattern to a file

 Zlin asks for a filename. If the file exists the user is asked whether to overwrite it or quit (the default). Pattern files may have any name and extension, although this should be something descriptive.

 A pattern may be saved to a file at any time once it is defined – you can try it out first, or save it right away. Pattern files can be manually edited: each file contains a header explaining the format.

Draw line - the default - Draw a Zline

 Zlin asks for start- and endpoints, offering the endpoint of the last Zline (if one exists) as the default start.

It then asks for a scale:

“Number of patterns/Scale/Previous scale (1.0)/<Maximum unscaled>:”

If this is the first Zline drawn in the current editing session or the previous ones were not scaled the "Previous scale" prompt is omitted.

 If Number of patterns is chosen Zlin prompts "Number of patterns:" (If a number is entered at this prompt it is taken as a number of patterns and prompt this prompt is bypassed.) Zlin scales the pattern so that the given number of patterns fit between the endpoints, draws the Zline, and saves the scale factor used as the next Previous scale.

 If Scale is chosen Zlin asks for a scale factor, again offering the previous one as the default. (If there is no previous scale factor then 1 is used. The default is written as a real truncated to two decimal places, its accuracy is not affected.)

 Zlin draws the greatest number of patterns that will fit between the endpoints at the resulting scale and makes up the remaining space to the endpoints with two straight line segments of equal length.

 Previous scale: this is the same as choosing Scale and accepting the default. Zlin uses the previous scale factor again so that the size of the patterns in the Zline matches those in the previous one.

 Maximum unscaled: the greatest number of patterns is drawn that will fit between the endpoints at full scale and the extra distance is filled with two equal straight segments, as though a scale factor of 1 was input.

Revision history

 1.0
The basic Zlin.

 1.1
Added ability to scale patterns.

 1.15
Added ability to read and write pattern files.

 2.0
Immersed computer and all backups in coffee. Complete rewrite.

 2.1
Removed bug which caused monitor to burst into flames.

 2.2
Added ability to duplicate previous scale.

 2.2a
Noticed and ignored crash on zero pattern length feature.

 2.25
Redesigned file format for greater clarity, added header, rewrote file reader to ignore comment lines.

 2.9
Changed file format - angles are now saved in degrees to avoid multiples of pi.

 3.0
Took two weeks off to hunt weasels in Mongolia.

 3.6
Cleaned up subroutine organization, rewrote initial prompt.

 4.0
Failed in attempt to interest coworkers in beta testing.

4.1 Wrote documentation.

Xrefs, Paper and Model Space

 Xrefs are External Reference Files - they are blocks inserted into the drawing with the Xref command, and behave like ordinary block insertions except that each time the drawing is opened they are updated: if the original drawing is changed, the block displayed in the drawing is changed to match.

 The advantage of this is that drawings made by other disciplines (such as piping) can be used as backgrounds and our drawings will always contain the latest information even if piping forgets to tell us that they have moved buildings, rotated the plant, installed a flare stack, etc. (It won’t be less irritating, but at least we will know.)

 The down side is that if the xref drawing is renamed or moved then the xref will just disappear from the drawing and be replaced with a line of text detailing where it should be but isn’t. If on the other hand the drawing is abandoned and a new one made and updated then we will carry on using the wrong drawing in blissful ignorance.

 Xrefs are a very powerful tool for allowing collaboration between disciplines. It is very easy to allow them to substitute for proper communication, at which point they become an attempt to solve an organizational problem with a technical fix. This will inevitably cause friction between people and departments, and it will be tempting to blame the problems on the computer system and try to fix them with more technology. If you are xrefing drawings it is essential to make the owner aware of this and keep in touch with him so that he will keep you informed of changes which are not apparent from looking at the xref rather than ignoring you as a potential irritation located at the far end of the network.

Xrefed Title Blocks

 Putting the title block in a drawing as an external reference has become quite a popular approach recently. We are of the opinion that this is a mistake.

 There are two apparent motivations for this: the saving in space and greater consistency.

The first makes very little sense: a well-made title block should be substantially less than 100 kilobytes, and a 100 megabyte hard drive currently costs less than $300. (Uh-oh – time has passed and a 100 gigabyte drive is less than $100.) (And again – currently a terabyte drive is $65.) So the drive will absorb (assuming that the tb is exactly 100k and the xref takes up no space at all) the difference between the xref and a straight insertion for a million drawings. The additional cost per drawing is 1/100 of one cent. Even were this significant, and assuming that one actually wanted to keep a million drawings on line at one time, the space savings which could be realised by purging drawings and erasing backup, error, and log files would completely swamp this trivial saving.

 This also leaves open the possibility of changing the border and having it suddenly overlap the contents, or of opening a drawing and having the border vanish.

 Secondly it is claimed that one can change the title block in the reference drawing and have the changes appear in each drawing as it is opened. This is true so far as the non-text entities are concerned, but one presumes that any change which wasn’t very trivial would involve rearranging attributes, which of course can’t be contained in an xref – there must be a block in the drawing which contains all of the variable data.

 This means that the xref is actually quite hazardous: if it is ever changed then chances are that it won’t match the arrangement of attributes on old drawings, and there will be no way to decide to leave them as-is – they will either have to be modified or a separate xref will have to be made for new drawings. The ultimate outcome of this is a very complex and confusing system, balanced against a lack of any appreciable gain.

 It is much better to make a compact and well designed title block, and if it ever needs to be replaced, swap it out with program. We have used this approach very satisfactorily many times, and would be happy to provide both programming and guidelines for good title block design.

 If you are considering using xrefs for title blocks, plc arrangements, etc. the utility Blup may be of interest.

Paper and Model Space

 Ordinarily AutoCAD operates in model space. This is the standard 3D environment which extends to infinity (or 1013 units) in each direction. Paper space is another environment which exists alongside Model Space. It is strictly 2 dimensional, and holes (or Viewports) can be cut into it which look down onto model space, but each viewport can look onto the drawing from any desired angle and show it at any desired scale. This means that a drawing can be done in 3D and then different viewports can show it from different angles and enlarge sections to show small details.

 When paper space was introduced it caused a considerable uproar in the drafting community: it was a major change, and it was necessary to find a use for it. This was fairly easy - under AutoCAD R12 it was not possible to display only part of an xref, so in order to remove unwanted parts like the title block, sections of pipe floating outside the border, and storage buildings we had to clip off the excess. This could have been done by encouraging the disciplines making the reference drawings to put everything on the appropriate layers and then turning off those containing the title block and other unwanted entities, and in many cases this worked and the xref could be treated as just another block.

 However, it was again tempting to use technology to solve organizational problems (in this case that we never talk to the pipers and structural guys) and we did so: our title block was inserted in paper space and a viewport was used to cut off parts of the xref which we didn’t need. This didn’t really solve anything, since we had to clandestinely edit the reference drawing to clean up the layering on things that were visible in the viewport, but it gave everyone a use for paper space, so they were happy. Except that it made life slightly more difficult.

 With Release 14 it became possible to clip the displayed area of an xref and show only part of it, and so paper space became what it was intended to be: a tool for mechanical designers to use to show different views of one 3D model. Unfortunately many people felt that they were somehow missing something if they didn’t use it, and we came to see aberrations like title blocks in paper space and everything else in model space, or some of the text and the title block in paper space and everything else in model space, or even everything in model space and all plotting done in one big viewport in paper space.

 The average electrical drawing does not need paper space, as a general rule of thumb if you only have one viewport, if all of your viewports touch, or if they are all at the same scale, you don’t need to use paper space. It is interesting to play with and useful to know about and understand, but for simple 2D drafting it will make your life more complicated without any noticeable benefits.

Inserting an Xref

 An xref is inserted into the drawing with the command Xref. This asks for a drawing to xref into the current one and an insertion point, scale, etc. We usually insert xrefs in model space at 0,0, scale 1, although they can be put in paper space, and like any block they can be inserted at any point and scale you want.

 Now use the layer dialog box or Yalf to freeze any layers you don’t want, like text, centrelines, titleblock, misc, topo, picture_of_my_dog, stuff_we_never_built, old_useless_revs, etc. Xref layers names are in this format: Xrefname|Layername, they can be frozen and their colour can be reset but they can’t be made current. It is a good idea to change most xref layers to colour 8 (with Grl), which we print as a very fine line so that xref stuff - which is primarily used for a background - doesn’t visually overwhelm entities we are adding.

 RocketCad sets the system variable Visretain to 1, so that the xref layer settings are saved in the drawing and don’t snap back to those in the reference drawing when the one it is xrefed into is opened. This is worth knowing because 1. It is wrong in the manual; and 2. We might suffer from dementia and change it.

 It is a good idea to get into the xref and check that everything is on the right layers, which it won’t be. You can check with Ezlay, which allows you to display the layers one at a time and suck stuff from one to another easily. (Bear in mind that people can be very territorial about their drawings and may become abusive if they find out.) Be very careful of stuff which will be on layers which are frozen in your drawing, since if it is something important you will never see it again. Similarly if someone installs a motor which you might like to know about but puts it by mistake on a layer that is frozen in your drawing, you will never know that it is there.

Viewports in Paper Space

 If you are really determined to use paper space: (assuming that you are back in the original drawing and the layers are set correctly) get into paper space by clicking on the Layout tab at the bottom of the drawing area. (This is for Acad 2000 and up only, if you need to do this in R14 you will have to read the manual, set Tilemode to 0, and type PS.) A dialog box will appear and ask for all sorts of settings and give you a single viewport which can be risized by dragging the corners.

 Additional viewports are inserted with the Mview (Make Viewport) command, and you can suck a title block in from wherever you like. Make the viewport about as big as the free space available in the titleblock, you can resize it later. (If you started with an existing drawing or paper space prototype you will presumably already have a title block and a viewport in paper space.)

 Now make the viewport active by typing MS, or by double clicking on it. The cursor will show as crosshairs when it is over the active viewport, you can change to another one by clicking in it. While you are not over a viewport the cursor will be the standard windows arrow, you can make paper space active again by typing PS or by double clicking in an area which isn’t in a viewport – the cursor will be an arrow instead of the crosshairs. Snap, scale, layer visibilities, and Ltscale can all be set independently in paper space and in each viewport.

 Now (in a viewport) zoom to extents to get the whole xref on screen, and then Zoom 1XP which sets the viewport to the same scale as paper space, or if you insist on having paper space at a different scale from model space, Zoom 0.1XP will give you a scale of ten to one in the viewport. Use the Pan command to move the drawing around in the viewport until it is positioned as you like, get into PS and resize the viewport to cut off anything you don’t want, or if there is nothing you don’t want, to look neat. You should also use Properties to put the viewport on the Defpoints layer so that it won’t plot (the contents will).

 Once everything is nicely set up you can put text and electrical stuff on top of the xref, but in paper space. Large amounts of text can be wblocked out of the original xref drawing, edited, and sucked into the current drawing in paper space. It is handy to use the corner of a building as the insertion point so that you know where to put it. All zooming and panning should be done in paper space (typically you won’t need to get into model space much) so that entities in the two spaces stay aligned and at the same scale.

 It is a good idea to lock your viewports once they are set up: under the View menu select Lock Viewports. Now if you try to change the view in the viewport – i.e. you zoom extents in model space without thinking – AutoCAD will drop into paper space, zoom extents, and get back into model space and the alignment between paper and model space won’t be totally destroyed.

Utilities.

Moss.lsp can be used to suck entities from model into paper space.

Spam.lsp moves stuff from paper space into model space. Both attempt to leave them in the same position relative to existing architecture.

Span pans model space based on points selected in paper space.

Igloo.lsp allows a line to be drawn in paper space which is then sucked into the same location in model space. This is handy for lining one entity up with another since you can osnap onto something in model space from paper space, but not the reverse.

Markups

 The next section is provided not so much for the use of the draftsman as for the edification of those designing the drawings he will be creating or modifying – you can print it out and use it to demonstrate that it isn’t just you complaining, that there really are accepted and sensible ways to mark up a sheet of paper, and that if they are followed you can produce a better drawing package in less time.

Markups: The Unlikely Ideal

 A markup isn’t supposed to show exactly what the finished drawing should look like - what we really need is a document which tells us what information to put on it.

 This is an attempt to clarify the process so that designers won’t waste time being too neat or precise and so that they will tell us what we need to know to work as quickly and accurately as possible.

 This may be a good place to point out that it is better to actually put some marks on the paper than to hand someone a blank sheet and then dictate the contents of the drawing. As a general rule things which are written down are remembered, speech is forgotten. Otherwise why do we need drawings?

Standard pen colours

 Except for red, these aren’t used much any more, but it is nice to know how things used to be. (Also this is probably a good time to introduce the painful concept of standards.)

Red: our favourite, because it stands out from the original black print. Anything in red is put on the drawing. (If you are working on a red drawing you may mark it up in black.)

Green: comments and notes to the draftsman. These are read but not drawn in.

Blue: this traditionally meant: “Erase this,” but wildly scribbling over something in red is just as good. Detail freaks can write: “Delete this stuff” beside it so that we don’t just draw the scribbles.

Black Pencil: this doesn’t exist, even if it says it does.

Eyeliner, Purple crayon, Diet Coke, Transmission fluid: these aren’t used much…

 We are very happy if everything is done in red, although green is also useful as it saves us having to ask whether to cad the comments. If you don’t have a red or green pen we will find you one.

Legibility

 Neatness does not count. A lumpy trapezoid with the words: “Lighting Panel” squashed into one corner is just as easy to draw as a perfect square with illuminated calligraphy. The drafting department will make your drawings look nice, you just have to give us the information you want on the paper. Anything else is a waste of your time.
 (Note, however, that time spent writing letters that don’t look like a row of discarded banana peels is well repaid when we don’t have to ask you to interpret twelve out of fifteen words.)

Whiteout and tape

 We admire the craftsmanship of those who use these, and some of the drawings they produce are works of art. We also don’t notice things we should erase because they are so perfectly obliterated, and spend a lot of time looking at the back of the drawing trying to see under the whiteout.

 It is also not unknown for one to erase something only to find that it is needed three lines down. It is better to circle it and put an arrow pointing to the new location than to cover it with whiteout and redraw it.

 In cases where the designer can paste in a detail cut from an existing drawing, it is very helpful if he notes where it came from so that we don’t have to search for it.

New Drawings and New Jobs

 Many times we are given a markup on an existing drawing, make the changes, and are told that it was intended to be used as a prototype for a new one. Writing: “New Drawing” in the title block saves having to undo everything we have done or redraw the original. A project name and drawing number don’t hurt either.

Markups on Signed Drawings or on Outdated Drawings

 This is a very bad thing. So is doing a markup on an old copy of a drawing so that the changes you are making conflict with the ones that have been made since the copy you are using was printed. If there is any doubt, if the drawing is more than a few days old, or if you are not the only person working on the drawings it is a good idea to either get a fresh print or to ask the draftsman to see if there is a later electronic copy.

Used Markups

 Once the changes on a markup have been cadded and marked off in highlighter the designer checks the new print and points out any mistakes to the draftsman. The markup is then dead and should be destroyed. Any future markups must be made on the new print - adding new revisions to a used markup will cause chaos. Although the designer is the ultimate authority on everything from morals to a healthy diet, the draftsman should refuse to accept a retreaded markup because he will be blamed for the resulting catastrophe.

Xerox Copies

 The designer wants to take the markups home to look at, so he makes a copy and gives it to the draftsman. Now everything is in black and white instead of glorious black, red, and white, the draftsman misses small things and the designer complains.

 The only colour in which markups can be done is red, and you should refuse to work from ones which will cause you to make mistakes. If the designer puts you in a position where you will make mistakes, look bad and screw up the project then you should refuse have anything to do with it. A designer can organize his part of the job as he wishes, but practices and standards are not his domain.

 The same goes for decisions about drafting: designers often want things drawn a certain way, but if this will lead to a drawing which is idiotic, unclear, or which violates industry standards then the draftsman should point out that this is his area of expertise - the designer is responsible for the technical content, but the appearance and presentation is the responsibility of the draftsman.

 Autocratic designers are a trial to everyone around them and although they are acknowledged to be far above ordinary human beings they are the cause of more wasted time, shoddy work, and disasters than the ordinary mortals who allow their coworkers to do what they are good at.

Scale

 Since items which have a real size are usually drawn to that size it is much easier for us to see if an object will fit into a space than it is for the designer to draw it to scale on paper.

 We can also move things and try different arrangements - this is one of the few times when we don’t mind having someone stand behind us and say “Now move that to the left...”

 Again, an uneven rectangle with measurements scrawled beside it is just as useful to us as a Xerox of the front of the actual artifact. If you don’t know how big something is, put a note by it, preferably in green ink so that you don’t have an endless series of notes: “Not sure of size - fake it.” “Don’t put that on the drawing.” “Or that...”

Size

 A physical object has three dimensions, measured along the X, Y, and Z axes. In English they are Length, Height, Depth, Width, and Thickness. “240w x 300h x 1175d” doesn’t tell us clearly which direction is which, and we don’t need the third one. “350 x 200, long side against wall” is much clearer, or draw a rectangle and scrawl the dimensions on two sides. (If it’s for a bill of materials we don’t care – the guys in the shop know not to put the side with the buttons on it against the wall.)

Abbreviations

 These can save time, provided that we know what they mean. We will typically use the long form where there is space unless you indicate that you prefer the abbreviation. We also try to use standard abbreviations: Cct. for Circuit, Gnd. for Ground, Dbmn. for Doberman. An abbreviation is always followed by a period.

 Don’t even think of trying to use abbreviations containing letters not in the original word.

Project Data

 It is a good thing to have the information common to all drawings in a project as early on as possible. This helps us determine which project a drawing belongs to, and ensures that when a drawing is finished at the last minute it doesn’t have to be opened again and replotted to add something to the title block. (See Halon for a better way to deal with this.)

Timing

 We like to have some idea of when you want a job finished, unless it is in fifteen minutes in which case we don’t want to know.
Trust
 Even if you expect the job to be built by idiots there is a limit to the amount of information it is desirable to cram onto the paper. There is a point beyond which clarity gives way to confusion and the desire to convey an idea to the builder is replaced by the neurotic fear that he may miss the one thing you didn’t detail.

 Typically the standard details are included with a project to protect us from both builders and our own paranoia. We are also always happy to volunteer an opinion on how much detail is needed. Or in fact on just about anything.

 We also have a lead sheet to explain our symbols to those who are new to the industry, and including this with a drawing package saves the time and space required to put a legend on each drawing.

Standards, why we have them, and why you can’t change them

 We have spent some time working out the best way in which to present information, and while we realise that we were placed here solely to serve as a conduit through which your thoughts may drip soggily onto otherwise pristine sheets of paper, we actually do know what we are doing.

 Surprisingly, attempts to rehash standards or to ignore them just this once usually result in everyone feeling free to ignore the standards while still expecting the time savings which would have come from adhering to them.

 For example our shutdown key import software allows us to produce an Sdk in ten minutes which once would have taken the better part of a day. This has been so successful that everyone has felt comfortable asking for slightly different drawings and presenting us with weird “this-time-only” spreadsheets which then become either another standard or a base for further variation. Currently we expect to spend about an hour per key searching for the drawing which goes with a given spreadsheet and the software to import it. This is time wasted not only on the oddball jobs but on every job.

Changing your mind

 If you scribble something out and then decide that you didn’t mean to erase the fire detection system, circle it and write, “ok” beside it. There is no need for long explanations or to redraw it.

If you change your mind again (say you realize that the Pacific Ocean isn’t that likely to catch fire) you can scribble out the “ok” or write “Kill” beside it. We are pretty forgiving of this sort of thing, although we will ridicule you.
Units

Here are the common units abbreviations as specified by Apegga, just as a reference for what is in upper vs. lower case.

Units

Amperes:
A

Kilograms:
kg

Kilowatt:
kW

Metres:
m

Millimetres:
mm

Pascals:
Pa

Volts:

V

Watts:

W

Prefixes

Kilo:

k

Mega

M

If these seem arbitrary and inconsistent you may take the metric system as an example of what you get when you ditch the existing standards and hack something together on the spur of the moment.

Remember that the unit goes after the number without a space. I know you’d like to leave a space for clarity, but you can’t. The human race has taken a lot of time to work these things out and you can’t change them, even if you are the first sensible person ever born. Your life among the unenlightened will be a harsh and lonely one, don’t make it harder by being a nitpicky dolt.

Text Size

 Although the Law of Frontality hasn’t been widely used since the end of the Egyptian Empire, I am increasingly seeing text made larger in proportion to its perceived importance. This is unfortunate when the text is part of a block that must then be redrawn and saved under a different name and any associated programming rewritten and distributed. When it is just text it is merely irritating. We typically use only 2.5 and 3mm text, but the National Enquirer usually has job openings for people who like the larger sizes.

Later, and in a more reasonable mood: an explanation
 Originally (before there were engineers) drawings were hand drawn on ‘D’ size (22” x 34”) sheets, mostly because at this size they held a reasonable amount of information. In cases where a smaller drawing was required – say for inclusion in a book - the original was drawn very precisely and then photographically reduced.

 When computer drafting became common we continued to use the old standard page sizes, and all of our drawings are based on them.

 But: smaller printers are faster than full sized plotters. We started printing drawings on B sized sheets, and since CAD is more precise than any but the most careful and time-consuming manual drafting they were still legible. The builders liked not having to wrestle with tablecloth-sized sheets of paper, and they became the standard issue size.

 So we now print all of our drawings at about half the size for which they were designed, and the old manual 2.5mm text height, which was too large for machine-drawn type, ends up being 1.25mm, which is about the same size as standard printing, but too small if one is farsighted.

 The solution: actually there is no solution.

 We could make a new set standard drawings based on a ‘B’ size sheet, but we would have to develop and maintain two sets of standards, resulting in more time spent on every job, and much more time spent training new draftsmen.

 In addition, everyone with a half-baked idea for a new standard would crawl out of the woodwork and we would end up with badly designed chaos. (As opposed to the more common well designed chaos.) Our current standards are the result of over a century of refinement and more-or-less continuous argument, and even if we had 100 years of non-billable time we aren’t anxious to go through that again.

 Also, as the size of text increases we can fit less of it on a drawing so we would have to split many of our drawings in two, or settle for a lot less detail.

 A drawing with more than two sizes of text usually looks awful.

What can be done?

 We can print drawings in a larger size – ‘C’ or ‘D’. A ‘D’ size drawing printed as a ‘C’ leaves the text printed at about the size found in most books. In cases where a drawing will be consulted regularly a larger copy is usually a good idea in any case.

 We can strive for better layout – I was recently asked to fix an almost illegible column of text. The problem wasn’t the text height, but the spacing between lines. A properly laid out drawing is more attractive, conveys information more clearly, and is easier to read.

 Finally, there comes a point when one has to admit that glasses may be a requirement.

On Designing Title (and Other) Blocks.

 If you are revising an existing block you need to consider what standards depend on the shape, size and layout of the current block, whether you are going to use it to update existing drawings, and if any programming relies on the old one. The two should be reasonably similar and use attribute names which are - if possible - the same because it is likely that the old and the new will coexist for quite a while.

 If a redrawn title block has a useable space which is the same as or slightly larger than that of the old one and a similar insertion point then it is easy to swap the new one for the old without rearranging the contents of the drawing.

 Make sure the block matches existing standards – text height and justification; color, size and appearance of recurring elements, line weights, overall spacing. Also make sure that, unless you are deliberately redrawing an existing block, the one you are making doesn’t already exist.

 Prepare for idiosyncrasies in standards, logos, etc., but don’t make a ridiculous title block by trying to allow for everything.

 It is best not to incorporate a client logo block into your title block, just leave a space and put it there, this way you can reuse the drawing for another job without redefining the title block to include a different client logo. Your logo on the other hand should be part of the title block. Colour it explicitly, kill any layers, put it in place.

 Where should the insertion point be? If the block is based on a circle then it is usually the center, if it sits in the upper left corner of the title block then the insertion should be the upper left hand corner of the block. A title block insertion point is typically the lower left corner.

 Insertion points should be on snap, as should everything in a block (unless it is a measured version of a real object), and at a reasonable setting – drawings done at 1:300 with a 0.5 snap don’t say great things about their creator. Make sure that corners and intersections line up properly in case someone wants to snap onto them, and that everything is neat and professionally drawn.

 For real things don’t add too much detail if it isn’t required, draw small details in 0 width - typically gray – and general outlines in something thicker. Most printers can put lines no closer together than about 1mm (1/2 mm printed size) before they start to run together, although you can get away with less for very fine lines.

What information should be included?

 You should try to avoid adding attributes and boxes to your title block just because you have seen them on other ones – if you have almost never seen one filled in then you likely don’t need it. Lots of title blocks have separate filename and drawing name attributes, which is a relic from the days when a filename could only be eight characters and a drawing name told you where the paper original was stored. Now that we have long filenames the drawing and the file names should be the same, and there should only be one attribute.

 A title block needs three or four title lines, the drawing name (which should be the same as the file name), your company name, space for a client name or logo (include an attribute in case he doesn’t have a logo, although if this is the case you should probably draw up a simple one for him, typically a line of text in a nice font), and the main rev. Some people like a separate space for the LSD, others put it in the second title line in which case there should be four.

 Don’t forget to include a space for permit and engineer stamps. If any of your engineers insist on stamping drawings by hand you should see how big a space they require and remember that the print will be smaller than the electronic drawing size.

 Some title blocks have overlapping sets of attributes for a two, three or four line title, which is clunky and pointless. One also sometimes sees attributes for “Sheet one of three” etc., which may have had some purpose in the days of manual drafting. Don’t do either of these things.

 There are also some title blocks which expect the drawing name to begin with the drawing paper size, so this is already filled in: “D-“, usually badly aligned and in a different font from the attribute which follows it. This sort of thing is usually done because someone is copying an existing title block and figures that the guy who drew it knew what he was doing. He didn’t.

 Rev area: number, description, date, by, approved, engineer. It is wise to avoid too many initial columns - client approval is never filled in, so why bother? Make the rev area part of the main title block, ones which are done in chunks are irritating. And don’t ever make a title block where the lines are one block and the attributes are another separate one.

 Remember the four rules for avoiding idiotic standards:

1. The man who made the title block which you are copying or modifying was a dangerous lunatic. Don’t do anything he did.

2. If it sort of seems like a good idea but you aren’t sure why, then it isn’t. Don’t do it.

3. If your boss asks you to do something dumb, don’t – you will be the one working late to make up for having idiotic standards.

4. “We did it like that last time” is not a reason to do something brain-dead.

 Programming is part of this, don’t do strange things to make it easier to add new revs by hand because if you don’t have a rev adding program you are wasting time which could be more profitably spent getting coffee.

 Do you really need to duplicate all the information from the first rev in another set of boxes in the main title area? Do you typically have extra space, and do you really need a permanent record of who first did the drawing and when? By the time that rev is gone it will be hopelessly irrelevant – if someone needs it then they should dig up an old print or de-archive the electronic file.

 As a general rule it is a bad practice to duplicate information, either from drawing to drawing or in different places on the same drawing – it is a waste of effort to put something in two places, and at issue time they will inevitably be different.

 The reference drawing area – what is this for? In case someone can’t find another drawing in the same set, or so that they can look at vendor drawings which they don’t have? These are a waste of space. Leave the area empty and you can put reference drawings there if you want or notes if you don’t. This is one occasion where a separate block which sits inside the title block may be a good idea.

 Similarly an area labeled “Notes” looks a bit odd if it is empty and the notes are elsewhere in the drawing because it was too small.

 A file name and plot date attribute are worth considering. You can also use the built in plot stamp feature, but this changes the printable area, making the drawing smaller, which is undesirable, and is flaky and remains so after several AutoCAD versions, and this puts information on a print which isn’t saved in the drawing, which is a questionable practice. The attribute (or separate date block) is often put on the left side of the drawing where it can be lost when the drawing set is stapled together, which may or may not be a problem. If you use an attribute you can put it wherever you want.
 Disclaimers, copyright notices, and threatening text. Do you really need these? Is the stuff you are doing really so unique that people will want to steal it? Do you have an employee who is secretly building a compressor station in his back yard from stolen plans? Do you really think that a warning down one side of the title block will deter him?

How big should a title block be?

 It is tempting to make a drawing B size: 11”x17”, but this wouldn’t work with anyone’s existing blocks which are sized to work with a D (or A1) size drawing. You could of course make up all of your own blocks and standards, but this would mean that if you wanted to transfer existing drawings onto your own title block or use an existing drawing package you would have to scale everything.

 An ANSI D size drawing is 864 x 559mm, and an ISO A1 is 841 x 594mm (rounded to the nearest mm). If you will be subdividing the space inside the title block into a grid – for instance for installation details – you should consider making the size a multiple of twelve so that it can be divided evenly into two, three, or four sections. (Use of the metric system will naturally incline one to consider only multiples of ten, which is a mistake.) A size of 576 x 864mm with a title area of 60mm along the bottle works well for this, and is just slightly larger than the common size 860 x 570mm, so you can swap it for most other title blocks and still have everything fit.

 If you add crop marks they should be one or two millimeters outside this, if you need to leave a binding edge move the left ones over by ten or twenty millimeters. For the reasons given in the scale section there is no point in trying to exactly duplicate a standard paper size.

 The text, revs and title area is usually 60 or 70mm high along the bottom edge, and there is often a slightly higher space at the right side for the main title, company name, client logo, etc. This should be as small as is reasonably possible - it is tempting to throw in everything that you might ever need, but later on you will regret wasting that space.

The Scale Attribute

 These are horribly inaccurate.

 Most title blocks contain an attribute for the drawing scale, but since for historical reasons we draw all of our title blocks to D size and print them at B size (i.e. half as big) the scale information is completely wrong most of the time. A couple of years back we got into trouble when a contractor arrived on site with a truckload of cables all of which were half the required length. Should we modify our base title block size? Are you insane? Even if we did the scale would be off, because the border is typically either A1 or D size, but these aren’t exactly the same, so you would have to know in advance which paper size you were always going to use – metric or Imperial. But that would still be wrong, because nobody prints so that the outer border runs exactly along the outside of the paper (allowing for line thickness of course), and most plotters can’t do that, so your drawing is always scaled down slightly. You could fix this by matching the title block size to the area of the paper which the plotter can actually print, which isn’t the same as the paper size. Too bad if you ever get a different printer. And don’t forget that a sheet of paper can change length by 1/16” in fifteen minutes on a humid day, and is constantly changing size depending on temperature and humidity.

 A lot of companies are now leaving out the scale attribute and putting a scale bar on every drawing, but people do like to have some idea of scale so that they don’t arrive on site to find that the lease is only six feet on a side. You can also put a disclaimer on the title block saying that the drawing is only scaled correctly if printed so that the border measures say 861mm by 594mm, or just put a blanket disclaimer that nobody is ever to scale from the drawing.

 Probably your best bet is a scale bar which incorporates a simple warning: “Approximate scale if printed D size, don’t take measurements off this drawing.” If you need a measurement then that part of the drawing should be dimensioned, if that isn’t possible then someone should be out on site with a tape measure.

Sensible attributes

· Attributes should have unique, descriptive names.

· If there are several lines of similar ones, for instance in a rev area, the names should be the same from line to line but with an appended sequential line number.

· Avoid using “3 Line Text Line 2” “4 Line Text Line 5” etc. – “Title Line 1” up to line three or four is neat and easy to find. Having different attributes depending on the number of title lines is aggravating to use and a huge waste of time if you have to add another line to the title.

· The attributes should be in a sensible order and this should have some relationship to their physical arrangement in the title block.

· Avoid idiotic defaults like an archaic job number or a long forgotten date. As a rule you should avoid defaults entirely unless they are really likely to be correct.

· Prompts should not be all uppercase, and they shouldn’t begin with “Enter” or end with a question mark.

· Keep the text styles and different heights to a minimum, typically only the main title (maybe) and the company name should be in anything other than simplex or romans.

Text and Attributes in Boxes

 Text boxes should be an even number of drawing units high and wide, so that the attribute is easy to center. Attributes should be middle justified, and the insertion point should be in the middle of the box and on snap. (I like to make box sizes in powers of two: 2, 4, 8, 16, etc. This ensures that the center point is easy to find, and if you need to divide them further then everything works out well. Multiples of twelve also work well as they can be divided by 1, 2, 3, 4, and 6. Despite the fact that I am basing this on the assumption that you are drafting in millimeters, you should avoid multiples of 10 because they subdivide badly, with the exception of those which are also multiples of 12, i.e. 120 and 240.) Title blocks should be drawn at a snap of 1, and typically use 2.5 unit text for small stuff and 3 or 3.5 for the main title and drawing number. Anything bigger than that looks as though it was aimed at people too young to read adult books. (Although one might question why, having finally graduated from books with large print and pictures to ones with small print and no pictures, engineers and designers are continually looking for larger print and more illustrations.)

 A box should be about twice the size of the text it contains so that it doesn’t look cramped, if you are using a snap of 1 then 2.5 or 3mm text will go nicely in a 6mm box, if snap is 2.5 then a 5mm box works well, and in both cases the midpoint is on snap, which makes life a lot easier.

 Each box, with the possible exception of the main title, should have some small text in the upper left hand corner to indicate what should be in that box. I recently had to fill in a title block and had to look at the block prompt to see that an anonymous looking space was for the LSD. (Note to those not living in western Canada: not that type of LSD.) If the box is set up so that a sufficiently wide attribute value can overlap the description text then it should be centred not in the box but so as to avoid this.

 Revs are done in columns and use a text header over each column instead.

Logos, Images, and Xrefs in Title Blocks

 These should be cadded. Don’t mess with images and OLEs, they are ugly and hard to deal with. Take the necessary couple of hours and scan in the logo (or steal it from their web site), attach it to a blank drawing and trace it, then detach the image. Choose colours which will print out properly, don’t try to match the official ones and have it print out as an unintelligible smudge.

 It is tempting to use images and save the time – the computer community has an image of data being a huge tornado-like cloud from which you can grab whatever you want at any point and always conveniently have the latest version with no trouble. This is really appealing until you can’t print something because it has been made too small (raster images don’t scale well) or you send it back to the client and the images and xrefs aren’t there at all.

 Try to make each drawing a self-contained whole so that you don’t become known as the idiot who sent back all of the empty borders. Don’t ever incorporate an image or OLE into a title block, don’t xref any part of it, and don’t use any nonstandard fonts.

Layers and Colors

 Block subentities should all be on the same layer unless you typically want to turn off part of a block. (“Hey, we could probably understand this schematic better if we could turn off just the narrow vertical lines in the title block!”) Put everything on layer 0. It will then behave as though it was on the layer the block occupies, which is more sensible.

 Colours: things which have a standard color should be colored that color. Those which may need to be changed should be colored byblock. This way if the block is on a blue layer then the subentities are colored byblock and are blue, but if you want you can keep the block on the blue layer but color it red and the subentities will follow.

 This is handy when you are putting in small details which need to be in a very fine line and you aren’t sure what color this will be – make the block in regular colors, color the fine details byblock, and change the block color later, only the fine details will change. It is also worth considering if you may want to use your block in a drawing with a different color scheme.

 You can mix byblock, bylayer, and explicit colors, but this requires a clear idea of what you are up to and a certain amount of forethought. (Possibly in stark contrast to most things you do…)

 The same arguments follow for linetypes, usually so that you can show hypothetical, planned or hidden entities in a dashed line.

 As of Acad 2002 the line width assigned to a colour can override polyline width settings, so you should be careful that by giving polylines a width you aren’t actually making them lighter.

Geometry

There are a number of things which one finds on title blocks which seem like a good idea but which take up more space than they may be worth.

Crop marks. If you plot drawings on a large printer and then trim them to size, or if you have a printer which cuts off the outside line on a title block, these may be a necessity. For most uses they are a waste of space

Index numbers. These seem helpful – “Which relay is that?” “The one at grid location 2A.” But typically that’s going to be “On line 215,” or “In the left lower corner of the panel.” I have never seen them used, and they are visually distracting and waste a lot of space.

Print offsets and binding edges may be of use depending on how close your border comes to the left side of the page and whether you hole punch or staple your drawings. They are sometimes unavoidable, and if so it is better to build them into the title block than to set up a print offset on every one of your machines.

Other

 When you are finished check the block to make sure everything is neat and practical. Then erase and purge excess text styles, invisible blocks and other entities, dimstyles, groups, layers and layer filters, xrefs, images, layout tabs, and anything else which adds size and complexity and which is not strictly necessary.

Programs by Category

This contains a partial listing of the programs sorted by what they do.

1.) Lisp and Menu Utilities

2.) Drawing Repair, Reset, and Diagnostics

3.) Batch Files and Automation

4.) Data Import and Export

5.) General Editing

6.) Lines and Polylines

7.) Text and Attributes

8.) Blocks

9.) Layers, Colours, and Linetypes

10.) Dimensions

11.) Hatching

12.) Miscellaneous Entity Creation

13.) Paper & Model Space and Xrefs

14.) Zoom and View Utilities

15.) Drawing Derotation

16.) Electrical

17.) Mechanical

18.) Fonts and Shapes

19.) Layouts

1.) Lisp and Menu Utilities

Aasup

Install Rocket

Ld

Lisp loader.

Ldr

Load and run a lisp.

Lld

Lisp loader with dialog box.

Lldr

All of the above.

Moo

Load the Auxelec partial menu, Omo, unload it.

Snat/F12
Toggle snap: 1 – 2.5

2.) Drawing Repair, Reset, and Diagnostics

Beaker

Eradicate invisible entities, fix zoom problems.

Bounce
Anytime complete drawing purge, reload same drawing.

Cat

Replace all loose attdefs in a drawing with identical text.

Cobra

Put entities (including dimensions) back on snap.

Dn

Show nesting for a block.

Dna

Show nesting for all blocks.

Descale
Reverse the effects of Scaler.lsp

Duck

Find superimposed text entities.

Filthy

Mark the insertion of every entity of a given type.

Fint

Find entities by their insertion point.

Fist

Show fonts, text styles, and blocks containing them.

Flat

Move floating entities back to ground level.

Front

Bring an entity to the front.

Get

Extract the data list from an entity.

Inf

Prints (to the screen) various useful information about the drawing.

Klim

Kill image files from the current drawing.

Kx

Remove xdata from entities.

Lix

Sets the limits to the extents.

Lsc

Change entity linetype scale.

N

Lists all relevant entity data on the command line, no flip screen.

Play

Find out why you can't delete a layer.

Shag

Shape locator.

Scaler

Scale a drawing up to full size, adjust sysvars.

Snake

Put entities (not including dimensions) back on snap.

Splurge
Complete drawing purge.

Tdi

Reset the time spent editing the current drawing.

Trouble
Diagnose trouble with the current setup.

Uv/Kuv
List/Erase user variables.

Vis

Turn invisible attributes on (typically in CadPipe blocks.)

Xmark

Mark all entities which have xdata.

3.) Batch Files and Automation

Batr

Re-layer for entities and subentities.

Blurb

Blur for use in script files (see Blur).

Bsarn

Search and replace block names.

Daub

Make a program to duplicate dim settings in other drawings.

Fang

Run Lisp routines on a directory of drawings.

Halon

Update (title) blocks from an external data file.

Idle

Erase all clouds and Rev triangles.

Klim

Kill image files from the current drawing.

Nex

Go to the next file, don’t save changes.

Next

Go to the next file, save changes.

QQQ

Force a save.

Repall

Chgtext for every text entity and attribute in a drawing.

Ud

Set up dimensions.

Walt

Rewidth all text and attributes to 1.0.

Xpath

Repath an xref.

4.) Data Import and Export

3T

Make a stack of text into one line.

Asctext
Import text from a file.

Bomin

Suck a BOM spreadsheet into a BOM block.

Bimp

Make a directory of drawings into wmfs.

Bomp

Count BOM tag quantity numbers.

Bullet

Extract all blocks of one type to a .csv file.

Cable

Suck a cable schedule spreadsheet into a c&c drawing.

Candy

Suck a .csv file into blocks.

Chart

Make a chart from a data file.

Drawlist
Suck a file into a drawing list.

Ffind

Find a file in the acad search path.

Gostak

Suck a column of text into text or blocks.

Hoss

Make a master drawing from a directory of blocks.

Lent

Read one line from a .csv file into a block.

Shutdown
Suck a shutdown key onto a shutdown key drawing.

Snort

Write text out to a file in the same arrangement as in the drawing.

Stoat

Extract all text, attributes, and mtext from a drawing to a file.

T3

Split a line of text into substrings.

5.) General Editing

Bk

Put a break line on the end of two lines.

Bock

Clouds selected text and attributes in selected blocks.

Crab

Line up two (ideally circular) blocks and a line.

Cr

Circle Repair - make an arc back into a circle.

Dogbite
Trim a space around a circular block. (i.e. an instrument tag)

Doglite

Trim a space around a light.

Ecen

Centre entities horizontally between two points.

Fluke

Trim all trimmable entities away from text and attributes.

Gyc

Centre entities in a box.

Look

Remove everything from within a rectangular area.

Pur

Reorient arrowheads and lines, instrument tags and lines, etc.

Reco

Colour 4 out of each 5 entities gray, by position.

Sdel

Get selection set, erase only entities of a specified type.

Swx

Switch positions of two groups of entities.

Tar

Centre multiple text in multiple boxes.

6.) Lines and Polylines

Bf

Break first utility.

Igloo

Draw a line in Model space from points entered in paper space.

Intbreak
Break at two intersections.

Join

Make several entities into one polyline (if possible).

Lash

Toggle a polyline between vertex-vertex and overall linetype display.

Lsc

Change entity linetype scale.

Lt
Copy linetypes.

Mattress
Put matchlines on the correct layer, move text to the correct position.

Melon

Draw lines in inches, scale them to metric.

Pcl

Close a polyline.

Penguin
Multiple line and polyline crossing locator and breaker.

Pj

Join two polylines, lines, and/or arcs even if they don't touch.

Pur

Reorient arrowheads and lines, instrument tags and lines, etc.

Pw

Set the width of a polyline, line, or arc to 1/2 of Dimscale.

Tbone

Fillet lines without trimming them to the fillet ends.

Tiger

Line joiner - combines colinear lines into one, ignores others.

Wolf

Line joiner – allows more slop than Tiger.

Xing

Multiple line crossing locator and breaker.

Zing

Multiple line crossing locate and breaker - cut either direction.

Zlin

Repeated pattern polyline drawer.

7.) Text and Attributes

3T

Make a stack of text into one line.

Abc

Puts text entities in vertical alphabetical order.

Abg

Renumber text in sets with suffixes.

Above

Create new text line above an existing text line.

Ac

Copy attribute values from one block into others.

Atro

Middle rejustify an attribute and rotate it 90°. See Wormdog.

Attinc

Increment numerical attribute values in selected blocks.

Axe

Removes the first or last word from text/attribute or adds a new one.

Ba

Toggle B:A in text strings.

Cat

Replace all loose attdefs in a drawing with identical text.

Centre

Converts text to centre justified text.

Cf

Vertically realign and respace text between two points.

Chall

Search and replace for every text entity and attribute in a drawing.

Ddd

Toggle empty attributes to … and back.

Ddx

Edit any textlike entity. Aliased as D in the pgp file.

Deep

Edit any text/attdef/block subentity text.

Eno

Change existing text to incremented numbers, prefix, suffix.

Fand

Find and mark text strings in text and attributes.

Fcase

Adjust case to initial capitals.

Fifty

Multiple incremented text/attribute search and replace.

Filk

Change the last letter in each text entity in a selection set.

Firk

Search and replace for the first character in text and attributes.

Gostak

Suck a column of text into text or blocks.

Ht

Text height changer. Allows example selection.

Hvb

Moves text insertion points vertically to lie on same horizontal line.

Klat

Turn off selected attributes.

Ladd

Combines two lines of text.

Lx

Extract an attribute from a block (as text) without exploding it.

Mach

Attribute search and replace with windowing.

Marmot
Compresses width of multiple attributes.

Mash

Attribute replace with windowing.

Mex

Explode all mtext. Ye-ha!

Nn

Show subentity (typically attribute) data.

Nail

Make or add to notes.

Nt

Incremented numbers with text.

Otx

Text at a chosen spacing and angle. Defaults for everything.

Pfp

Edit multiple text lines with a real editor.

Phd

Change text entities from big font styles to standard.

Pid

Adds a prefix or suffix (or both) to a text string.

Pivot

Rotate text or attribute into the next isoplane.

Rat

Make a text string into an attdef.

Ratt

Make multiple text strings into attdefs.

Rocket

Rehash text for use with the Rocket.shx font.

Rtx

Reverse a text string. Handy if you accidentally typed backwards.

Sch

Style change.

Scrub

Chgtext for any or all attribute values in selected inserts.

Spray

Wraps text around entities.

Ssq

Sequential text changer.

Squab

Globally adjust attribute widths.

Strafe

Break text strings at each occurrence of a given number of spaces.

Styx

Set standard font to Romans.shx.

Sz

Incrementally reduce the width scale in a single attribute.

T3

Split a line of text into substrings.

Tar

Centre multiple text in multiple boxes.

Tater

Text, attribute, dimension and attdef editor.

Tch

Changes one or more text lines to a string, allows example selection.

Tea

Centre one or more lines of text in a box.

Teal

Left rejustify one or more lines of text in a box.

Tear

Right rejustify one or more lines of text in a box.

Tech

Chgtext for text, attributes, dimensions and attdefs.

Texas

Multiple text, attribute, dimension and attdef editor.

Tic

Centre text in circles.

Tk

Suck text into another string, erase original.

Tota

Total all numbers in selected text strings.

Ttb

Suck text into blocks by rows.

Tv

Vertically respace and centre text in a box.

Txs

Global text size changer - you specify initial and desired sizes.

Txtt

Text to drawing title etc.

Uc/Uct

Converts text and attributes in selected blocks to upper case.

Vbc

Centre rejustify a column of text.

Vbl

Left rejustify a column of text.

Vbm

Middle rejustify a column of text.

Vbml

Middle left rejustify a column of text.

Vbmr

Middle right rejustify a column of text.

Vbr

Right rejustify a column of text.

Vvb

Respace a column of text vertically, default = correct spacing.

Wormdog
Attribute rotater. See also Atro.

Wm

Move a word to the next line, or the previous one, or to a new line.

Wt

Adjust text width scale.

Xt

Explode text.

8.) Blocks

Ac

Copy attribute values from one block into others.

Bean

Sequentially renumber terminal blocks or text.

Blam

Explodes a block and replaces all of its attributes with text, recolours entities.

Blockout
Wblock all blocks in a drawing (write them to the disk as drawings.)

Blora

Vertically respace blocks.

Blur

Replace all inserts of one block with another, save attribute values.

Blurss

Blur only for selected blocks.

Chat/Chab Explodes a block, permits revisions, reblocks the results.

Crab

Line up two (ideally circular) blocks and a line.

Ddd

Replace empty attributes with "...", and vice versa.

Dent

Search and replace attribute prompts in the block tables.

Derot

Derotates blocks and text.

Dtr

Array (terminal) blocks downwards.

Expl

Explodes blocks with different X, Y and Z scale factors.

Ezo

Move all block subentities to layer 0, colour byblock.

Fibl

Locates all inserts of a block in the drawing, or all blocks.

Flip

Swap high switches for low and flip wire tags from side to side.

Fluke

Trim all trimmable entities away from text and attributes.

Hoss

Make a drawing of all blocks in the current directory, with names.

Kibl

Erase all insertions of a picked block, or all blocks.

Lx

Extract an attribute from a block (as text) without exploding it.

Min

Block multi-insert editor.

Obl

Select stuff, kill all inserts of any blocks found.

Pur

Reorient arrowheads and lines, instrument tags and lines, etc.

Note: Pur is a good routine and you cretins should use it more.

Qeb

Wblocks a picked block.

Rat

Make text entities into attdefs.

Ratt

Make multiple text strings into attdefs.

Repo

Reinsert every block in a drawing.

Sarn

Search and replace block names.

Scabl

Rescale all of one type of block in a drawing.

Scream

Insert a new value into the same attribute in numerous blocks.

Scrub

Search and replace one or all attributes in multiple blocks.

Sklork
Alphabetize attribute values, vertically by the first attribute in each block.

Ssca
Rescale selected blocks.

Tafi
Find instrument tags with a given pair of strings.

Taz
Relayer entities and subentities, colour bylayer.

(Ten)
Get the insertion of an attribute/text only block.

Tmx
Move lines on either side of terminals to the correct position.

Ttb

Suck text into blocks by rows.

Typ

Add Typ. To BOM blocks, move from one side to the other.

Vino

Incrementally retag columns of blocks, allows pre- and suffixes.

9.) Layers, Colours, and Linetypes

Black

Colour everything in the drawing white.

Bungee
Save the status of all layers for later restoration.

Cols

Change colour of entities by selecting one in the colour you want.

Curl

Moves entities to the current layer.

Diaper

Layer name search and replace.

EzLay

Show each layer sequentially, modify/erase/etc. etc.

Ezo

Move all block subentities to layer 0, colour byblock.

Flame

Freeze all layers except selected ones.

Flay

Freeze all layers except the one containing a selected entity.

Grl

Select an entity or subentity, recolour its layer gray.

Lake

Erase with filter – only deletes stuff on a given layer.

Larn/Lea
Layer capitalization manager.

Lcb

Move objects to new layer, colour and linetype bylayer.

Lch

Moves objects to a new layer by selecting an entity thereon.

Lms

Move entities to another layer, make that layer the current one.

Lset

Pick an object and thus set the current layer.

Lt

Changes linetype by example selection.

Lump

Move all entities on selected layers to a destination layer.

Lsc

Change entity linetype scale.

Lwt/Ln

Entity lineweight change/set to bylayer.

Mp

Match properties with a pattern entity - Layer, Colour, Linetype.

Nxlay

Step between layers, freeze all but the current one.

Play

Find out why you can't delete a layer.

Phdel

Delete frozen layers.

RL

Move one layer onto another, includes subentities.

Surv

Explicitly colour and linetype selected stuff, move to one layer.

Wlay

Wblock each layer in a drawing.

Yalf

Freeze the layer containing a selected object.

10.) Dimensions

Daub

Write a file to copy dimension settings from one drawing to another.

Dimf

Restore the default value to a dimension.

Dimp

Change the length of extension lines on dimensions.

Diss

Change all dimensions to the standard dimension style.

Gdim

A sample dimension setter.

Leda

Draw a proper leader.

11.) Hatching

Acla

Area class a building.

Chat/Chab
Chat explodes a hatch (or block), permits revisions, Chab reblocks it.

Cp

Draws a circle in Paper space over one in Model space (so that you can hatch it.)

Hd

Hatch disassociate.

HL

Htch the last entity created.

12.) Miscellaneous Entity Creation

Bk

Put a break line on the end of two lines.

Bolt

Draw a lightning bolt line.

Box

A better than usual rectangle drawer.

Brac

Bracket maker.

Bracket
Put a bracket on the end of two lines.

Cm

Cloud maker - works either cw or ccw, allows undo while working.

Cn

Narrow cloud maker.

Cb

Cloud box maker.

Cbn

Narrow cloud box maker.

Cs

Cloud selected entities.

Cyl

Draw 2D cylinders. Useful for steam engines. See Ofc.

Doon

Install a conduit down symbol.

Elsp

Draw an (optionally elliptical) spiral.

Flood

Floodlight maker.

Gal

Leaders (angles forced to multiples of 30() with multiple text lines.

Ins

Simple insulation maker.

Insu

Insulation maker.

Ju

Install jumpers on terminal blocks.

Junc

Make a junction box.

Leda

Leaders with multiple text lines.

Life

John Conway’s game of Life

Ofc

2D sphere maker. See Cyl.

Panic

Lighting panel maker.

Pur

Reorient arrowheads and lines, instrument tags and lines, etc.

Shield

Install shields on terminal blocks/wires.

Sundog
Fix clouds which were drawn inside-out.

Term

Put an arrowhead on the end of a line closest to the pick point.

Yang

Pipe end maker.

13.) Paper & Model Space and Xrefs

Cp

Draws a circle in Paper space over one in Model space (so that you can hatch it.)

Fungoid
Similar to Fungus, but less specialized. Also requires editing.

Gox

Open an xref from within the drawing it is xrefed into.

Grl

Select an entity or subentity, recolour its layer gray.

Igloo

Draw a line in Model space from points entered in paper space.

Moss

Move entities from model to paper space.

Nautilus
Rename/change Xref layers back to normal.

Nn

Find the layer a block/xref subentity lies on.

Pc

Draw a circle in paper space over one in model space.

Spam

Move entities from paper space into model space.

Surf

Make a wipeout entity, move some stuff on top of it.

Xpath

Repath Xrefs. Requires some editing.

Yalf

Freeze the layer containing a selected object.

14.) Zoom and View Utilities

Boo

Zoom extents, draw a temporary box around the previous view.

Dif

Find distances, keep a running total.

Ze

Zoom Extents.

Zp

Zoom Previous.

Zx

Zoom to the extents of what is on the current screen.

15.) Drawing Derotation

Bingo

Rotate text 180°

Bomb

Rotate a group of text/attdefs around their common centre point.

Brat

Derotate attributes in all insertions of a block.

Brot

Rotate all blocks of one type 180(.

Dart

Derotate all blocks of a selected type.

Derot

Derotates blocks and text.

Tork

Derotate a set of text entities around their common centre.

16.) Electrical

Btray

Draw a length of cable tray.

Coil

Put a “Coil and tape n spares” block on a line.

Flip

Switch single sided wire tags for double and vice versa.

Ju

Draw jumpers on terminal blocks, break at intersections with lines.

Melon

Draw lines in inches, have them appear in millimetres.

Mull

Put cable tags in the right order vertically, using the Mullen-Feenstra system.

Panic

Draw a lighting panel.

Squid

Adjust attribute widths in the monster shutdown key block.

Tga

Draw a cable tag leader line.

Tlen

Find the length of one or all heat traces.

Trx

Draw a cable tray end view.

Wir

Wire terminal blocks.

Wireline
Increment the line numbers in a wireline block.

Wobble
Entity wobbler.

Wog

Draw a heat trace line.

17.) Mechanical

Convoy
Piping data block metric/Imperial and Imperial/metric translator.

Godot

Count the non-overlapping weld dots in a drawing

Ins

Draw insulation - simple

Insu

Draw insulation – slightly more complex

19

Inserts a pipeline break.

Pilc

Copy all atts after the first one from one block into another.

Piles

Insert piles with incremented numbers.

Pilout

Piles - write the X and Y coordinates of all inserts to a file.

Pivot

Rotate text, attributes, attdefs into the next isoplane.

Rover

Install a wall break symbol.

Slope

Draw an iso plane indicator grating.
18.) Fonts and Shapes

Bfg

Remove big fonts from styles which use them.

Fist

Show fonts, text styles, and blocks containing them.

Shag

Shape locator.

19.) Layouts

Bic

Position lights in a building.

Bk

Draw a break line.

Bldg

Make a cut-and-paste building.

Btray

Draw and hatch a length of tray.

Door

Install a door in a wall.

Flood

Draw a floodlight.

Ga

Install a ground conductor arc with end blocks.

Gc

Install a ground conductor line with end blocks.

Gnd

Ground a building.

Klob

Erase the overlap from two sets of cable tags.

Tray

Draw a cable tray elbow.

Trg

Ground a tray.

Trx

Draw a plan view of a vertical tray section.

The Lisp Index

This section is an alphabetical listing of the Lisp files contained in this package, with explanations and notes on various topics and a certain amount of editorial comment.

~
Puts a line break symbol (which in case you have missed the point looks like a tilde: ~) on the end of a line or polyline. Uses the same block as the one in the Misc icon menu but can be called from the keyboard.

 Later: so many people have objected to using the ~ for a command that it is now aliased to Lb (LineBreak).

19
 Puts a pipe break symbol on two lines and trims them back to the selected point, or chops a section out of the pipe the lines represent and puts a break on each cut end. The break is installed the right way round with respect to the pipe, so time is saved both drawing and thinking.

 Note that 19 will crash if used on two lines which have different elevations. This might not seem to be a common problem, but there is an oddly popular piping package which puts entities at strange elevations. If this happens you can fix the entities (or the whole drawing) with Flat and then use 19.

3f

 3Dfaces are difficult to do anything with, but one often comes across them in 3D drawings which someone has attempted to flatten. 3f replaces them with polylines.

3T

 Take a column of text and suck it back into a single line. See T3, which it is designed to reverse.

Abc

 Puts text entities in alphabetical order vertically.

 See also Sklork and Abcat.

Abcat

 Select a number of blocks, Abcat puts them in alphabetical order vertically by the value of their first attribute. Actually the blocks remain where they were and only the attribute values are shuffled between blocks, so any odd positioning is preserved.

 Sklork is similar but will only allow one type of block to be alphabetized at a time.

 Abg

 Renumber text in sets with suffixes. Someone numbered a set of terminals 11A, 11B, 11G, 12A, 12B, 12G, etc.; there were seventy five triads on each of six pages. Abg was worth writing for just that one use, it is included here in case it crops up again. Select the text, give it the first number, the rest is automatic. If you are dealing with blocks you will have to use Eno and do three passes, one for each letter.

 Updated: now asks for a text string and splits it into characters, which are used instead of the fixed A, B, G.

Above

 Put a new line of text above an existing one, at the correct distance, match the original in style, rotation, etc.

 Aliased to Ab.

Ac

 Sucks attribute values out of one block and spits them in the same order into other blocks. Ac also displays the attribute values on the screen menu while the routine is active so that you can see what you are getting, but since you don’t have the screen menu on that won’t help you.

Notes:

1. Despite the use of the word "suck", Ac leaves the original block untouched.

2. Ac doesn't care whether the blocks are similar enough for there to be any point to the process, but you might. Computers do make mistakes. They just don’t worry about them.

 Revised: Now includes Acc - copy attributes from a block to an ss, Ack - copy attribute values from one block to another and erase the source block, and Sac - copy attributes from an ss to another ss.

Ak47

 People coming from companies where they had achieved a kind of nirvana before being fired are often at a loss to accept standards other than the perfect ones they are used to. They can be identified by their repeated use of the phrase: “I don’t know who did this but at xxxx we…..” and because they inevitably carry ten thousand files named “VS-R0 Prev Save” and “Dog Lake Layout 3” on some type of portable media and think it should be no problem for someone else to sort it out.
 This can become tiring rather quickly, but sometimes you can extract a particle of sense from the static. A particularly numbing onslaught left me with a grain of wisdom: sometimes you need the attributes closer to a terminal block.
 The result was called Ak1, and put both attributes above the block. Ak2 did the same thing but moved them closer to the block itself. Ak3 left them above and below but moved them closer, and this prompted Ak15, which centred the upper attribute in the middle of the block, something people desperately want until they discover that most blocks aren’t open and most terminal numbers aren’t a single digit. Pretty soon there were 47 and I had to rename the file.
 I’m not going to detail all 48 variations (Ak1-47 and Ak0 puts everything back to the original arrangement) because it’s more interesting to either try them out or read the file. The most popular ones are those I’ve mentioned, but if you like any others you can write them here.
 Later: the Rocket\Spreadsheets directory contains a file which details everything Ak47 can do.

Acla

 Area class generator. Select a building and Acla will generate an area class for it. Due to the complexity of the problem this is inclined to be a bit flaky, but it can save a significant amount of time.

Align
 Convert text to aligned text: select the text string, pick two endpoints.

 Aligned text is one of the stranger things which Autodesk did: the endpoints are fixed, so the height is adjusted based on the length of the string. In other words it is like fitted text, except that as more letters are added the height is reduced so that the width scale factor can remain the same. The result is that each line is a different height but has the same endpoints.

 To the best of my knowledge nobody has ever found a use for it, although if you want a stack of text that looks like a seventeenth century recruiting poster then this may be exactly what you need.

Alxlis

 Writes the names of all referenced xrefs to the file c:/xrefs.txt, ignoring duplicates. Xrefs require a degree of understanding that isn’t always available and we’re spending an increasing amount of time cleaning them up.
Asdic

 Finds a file in a subdirectory of the one the current drawing occupies. Intended to be used as a subroutine, since it would be about as fast to look for files directly unless a program was really desperate do it itself.
Asc

 At the dawn of time dedicated people spent countless hours making pictures from ascii characters. These still exist in various collections on the net, but there has been no effective way until now to import them into a drawing.

Asctext

 AutoCAD used to include a program which would import text from a file, here it is. Choose a height, justification, spacing, and various other things: small, quick, easy to use. You can also cut and paste, but this is a bit more elegant.

 See also Csv.

Atcase
 A routine for the purist. Select some attdefs, change the prompts to lower case with initial capitals on each word. Possibly not the thing when you are in a hurry, but if you are revamping a block so that inserting it isn’t like being yelled at by an illiterate then this may save both time and sanity.

Ati

 Increment a set of attribute tags of the form A1, A2, A3 to either A2, A3, A4 or B1, B2, B3. Also allows multiple steps – A1 to A5, or A1 to D1.

 See also Attar, which it is meant to work with.

Ato

 Place a grid of attributes in order by row and then column so that they will be in the right order when blocked. You could use the Battman command, but this is more elegant.
 Note that the Draworder command doesn’t affect attribute order in a block, obviously a design decision made by someone who had access to logic not available to the rest of us.

Atrep

 Suppose you had a number of blocks in which the attribute values were in the wrong order. Atrep can fix this. You will have to edit the file so this isn’t for the faint of heart and you have to have got into a situation where you need it so it isn’t for the rational.

Attar

 Suppose you wanted to make a 50 x 50 grid of attributes numbered by row and column like a spreadsheet, you could either laboriously make them by hand or use attar. The chances of your ever needing this are small.

 Caution: attempting to use Attar to make a block with 95,000 attributes wasn’t a really good idea.

 See also Ati.

Attinc
 Increment the numeric value of one or all attribute values in selected blocks. Originally made for incrementing rev numbers in drawing lists, this has proven to be of value in a variety of situations.

Axe
 Cartesian text editor - add text to the beginning or end of an existing text or attribute entity, or remove the first or last word. Choosing among these options is done by picking points respectively to the right or left and above or below the point by which the entity was selected. Those who hear this described are act to dismiss it as the work of an individual not strongly anchored in reality; this is quite possibly true but Axe is also a very useful command.

 Unfortunately now that Acad makes use of double clicks the speed at which you can enter points without having it either ignore the second one or activate some useless editing box has sharply declined. In keeping with the Windows paradigm Autodesk has gone from having an amazing array of useful features to having an array of features that can’t be turned off. Picture yourself an explorer lost in the Amazon rainforest, each tree and vine blocking your path labeled with “Exciting New Feature” or “Windows Interface Compliant.”

 See also Pid.

 Revised: Axe now chops text at a dash in addition to a space. So far this looks like a good idea.

 Revised again: Axe now remembers the text to add between drawings.

 Revised again: Axe decides what to do based on one point rather than two, Windows often placing limits on how fast you can make two clicks. Also extensive testing revealed that the two points were inevitably right on top of each other.

 And again: Axe now includes Exa, which retroactively adds a space between the old and new segments if you forgot to put one in.

Ba
 Pumps, motors and other equipment often come in pairs, labeled A and B. Ba toggles them between A and B - pick a text entity, or an attribute, Ba finds the last character and changes it A to B or B to A as required.

 I stopped doing this sort of thing when I learned to type well enough that finding a given letter on the keyboard took less time than organizing an expedition to the headwaters of the Amazon. Now that we are using little tiny windows dialog boxes it typically takes two or three tries to find that you can’t highlight just the one letter you need: typing is slow and tedious again but for different reasons, and anything that saves a little frustration is worthwhile.

 Updated: Ba now changes 1 to 2, + to -, and F to R (and vice versa). It also checks the whole string for A or B in quotes or surrounded by spaces if it doesn’t find an acceptable last character to change.

Bada

 Used to copy file names (but not files) from one directory to another, to rename scanned pdfs. Fairly specialized, probably requires minor editing.
Ball

 This has been renamed to Boch to avoid a conflict with a ball valve inserter in another package.
Batr

 Batch layer rename. This doesn’t sound all that useful, but the client needed to send the drawings back to the customer the next day, and the customer suddenly revealed that they had a layering standard which had to be followed exactly. Fortunately the client had used their own standard consistently so it was merely a matter of swapping one set of layers for another. Batr was the result.

 This of course requires you to know how to run a batch – see Fang – and to edit the old and new filename list near the very end of the file.

Beaker

 Beaker may be the most used of any program in this package. It erases each invisible and useless entity in a drawing, places a temporary X at its insertion so you can see where they were. This makes files smaller, speeds up loading, and fixes drawings which when zoomed to extents shrink down to postage stamp size in one corner of the screen and continue to so do even after several repetitions.

 It also prints totals for destroyed entities by type and overall. It is unusual to run Beaker on a drawing and not have it find something. The record stands at 10,834 invisible entities. Removing them reduced the drawing from 1.6 megabytes to about 70k.

 If you use points for anything (i.e. you are heavily into pointillism) you should not run Beaker. Similarly it will destroy the data blocks used in some piping drawings to store information about fittings, so be careful.

 Update: Beaker no longer kills points – they are not really an invisible entity, and are not useless like orphan data blocks, also Chat and Chab use them as placeholders. If you need to kill points use Pkill.

Bean
 Sequentially number terminal blocks. A terminal strip has to be enlarged in the middle of the job so you copy the last twenty blocks to the bottom and then renumber them: 21, 22, 23, 34, 35, etc. Even if your command of the integers is good this is a tedious procedure.

 Bean asks you to select some blocks and then renumbers them from top to bottom. It will do any blocks you show it, not just Rocket terminal blocks, so don’t include any blocks in your selection that you don’t want changed.

 Bean will also renumber text, but if you feed it a mixed set of text and blocks it will only renumber the more numerous type.

 Bean also contains:

 Beans: vertically renumber blocks, ignore any labeled Shield, Shld, or Shd.
 Bna: vertically renumber terminal blocks and text. Bna doesn’t filter anything out, if it’s selected it will be renumbered.

 Spa - change to "Spare n" in reverse vertical order. Useful for numbering spare conductors from the bottom up, which makes sense after you’ve thought about it for a while and had a few drinks.

 Aps - change to "n Spare" in reverse vertical order. Someone asked, and it was less trouble to do it than to argue. Which isn’t a bad summation of human history.
Bf

 Break first – saves having to decide whether the entity selection point was also the first break point and enter an f when you realize that it never is.

Bfg

 Redefine styles using big fonts to not use big fonts. There are a lot of drawings which complain about not having a big font they need whenever you open them, and in 99.9% of cases it isn’t used for anything. This deals with them quickly and simply, and Phd deals with them dramatically.

Bic

 Insert lights: indicate how many rows and columns you want in an area, pick two corners, Bic draws a grid of standard pendant lights in the proper arrangement. If you don’t want pendant lights you can use Blurss to swap them for some other type, or for some other type of device. If you’re bored you can obliterate the whole building with thousands of lights.

Bimp

 This appears to make windows metafiles of a directory of drawings. What it might be for is something of a mystery, but the ability to save to another format is often handy, if only to impress the uninitiated.

 Also contains Wif, make a Wmf of selected entities.

Bindo/Bindx

 Bindo binds all xrefs in a drawing, Bindx binds and explodes them. Both of them set the Bindtype system variable to 1 so that the layer names, linetypes, etc. won’t contain the Original_Drawing0 prefix.

Bingo
 A drawing rotation utility. Rotate all selected text 180 around their individual centre points. Note that this is not the same as rotating around their insertions which might cause them to land on top of nearby objects.

 See also Bomb which does a group around a common centre point.

Bk

 Draw a break line. Pick two points, Bk puts a standard break line between them, overlapping the ends past the two points by the usual small amount. The resulting polyline has small end segments which wrap back to the insertion points, these allow the break line to be joined to the lines it is breaking in case you want to hatch the whole thing.

BL

 Make two lines, arcs, or polylines into a box. Specifically made for converting sets of two lines representing a chunk of wireway or tray into a box so that they can be moved and re-hatched. Can also deal with lines which aren’t parallel, which makes it a lot more intelligent than there is any need for.

 See also Pcl.

Black

 Colour everything in the drawing white, hence the name. Written for a colleague who was on site and trying to deal with a printer which stubbornly refused to print in black and white. It is also handy for making everything monochrome before saving to another file format for use in word processors. It is not a good idea to save your changes after using this program.

Blam
 Explodes a block and replaces all of its attributes with text, deleting any which consist solely of " " or "". You are then free to edit them as your heart desires. Great for freeing non-attribute entities trapped in blocks like flies in amber, though I could probably be shot for such a treasonous thought.

 Revised: now handles the new justification types (mid-left etc.) and moves any released entities on layer 0 onto the layer on which the block was inserted, that being the layer they would have been displayed as being on. Also changes any entities coloured byblock to the original block colour.

 Includes Blamm, which colours all resulting entities bylayer, and Bran, which converts attributes to text and erases everything else. Bran is surprisingly useful for dealing with title blocks which need to be replaced.

Bldg
 Some time ago I was looking at a mechanical drawing which contained a plan view and four elevations of a building. It would have folded up almost perfectly into a model. Inspired by this I wrote Bldg, which takes all the dimensions and produces a model with tabs ready for gluing. One could then position the elevations on the walls and even put the floor plan in if one had a really accurate double-sided printer. Sadly it was greeted with a lack of enthusiasm that could have stopped a runaway locomotive, and further development has come to a grinding halt.

Blex

 Explode all blocks in a drawing. Intended for use getting a drawing ready to Solprof.
Bliss

 Write the names of all blocks in the current drawing to c:/All Blocks.txt. If you run it on multiple drawings only unique block names are added – you won’t have duplicate names in the file. Not generally useful.
 Blo does the same thing but separates the blocks by drawing. Both can be batched with Fang.

Bliz
 Suppose that you were stuck in the Argentine desert over Christmas with nothing to entertain you but a laptop computer. If you were Bing Crosby (alright, Irving Berlin, but it was Bing in the movie) you could write White Christmas, but that having been done you might instead write a block finder (like Fibl) which marked each insertion of a specified block (or all blocks) with a snowflake instead of an X. See also Fibl, the more rational version, or Mold, the much less rational one.

Blockout
 Wblocks (writes to the disk as independent drawing files) all block definitions within a drawing. Ignores anonymous blocks (hatch patterns, etc.) and at your option either ignores or overwrites existing drawings of the same name. It also spits out a few details of what was done to which blocks.

Notes:

1. Now you can see which blocks are parts of your wiring diagrams and which are little stick men.

2. Wblocking a block definition doesn't (unlike wblocking a group of entities) remove the originals from the drawing.

3. Blockout will wblock all blocks including those which are defined in the drawing but not inserted anywhere.

Revised: Blockout now makes a directory in the directory containing the current drawing and places the files there. The directory is named Wblocks, if it exists it is incremented: wblocks-0, wblocks-1, until an unused name is found.
Blora
 This is a quick bit of code based on Vvb. Select a group of blocks, it respaces them vertically so that they are a given distance apart.

 Later addition: also contains Blor, which asks for a base point and then calculates the vertical height of each block in the set and respaces them vertically so that they just touch. Good for cleaning up stacks of terminal blocks.

Blunt

 A variation of Blur – select a block, all inserts thereof are updated. No options are offered. This was intended to be a single-use type of thing, but since then I have used it repeatedly, so (like Ac) it is included.

Blup

 Xrefs save hard drive space and ensure that the information in the drawing is always up to date. Sort of.
 They have drawbacks: xrefs vanish or change just as you are printing the final set, clients have a different path structure so the xrefs don’t show up, or someone forgets to send them back. You can’t use attributes. You can’t bind and unbind them again. And they bring their own layer names into the drawing, often in vast numbers.

 Blup is an alternative. It runs when you open a drawing. If there is a file BlockUpdate.txt in the directory with the drawing Blup looks for each block listed in it, searches for it in the directory and then in the rest of the acad search path, and, if it finds a matching file, updates the block definition in the drawing.
 The file format is:

Block name

Block name 2
Block name 3

And so on. You can add comments after the file names although I’m not sure why you’d want to. They’re preceded with a semicolon:

Block name ; comment
Also you can temporarily remove blocks from the update with a semicolon:

; Block name ; doesn’t update
There are several advantages to this approach:

1. Blocks update automatically when the drawing is opened; Blup can also be run manually at any time.

2. If the external file isn't available the block doesn’t vanish from the drawing.

3. Missing or changed blocks can be extracted from any drawing - there is no need to redraw them or go to the backups. You can undo back through the update and then block out an unchanged version.

4. Drawings can be sent to the clients without having to bind or include xref files.

5. Auto-update blocks can include attributes.

6. The auto-update feature can be turned on and off by commenting out lines in the blockupdate.txt file with semicolons - you don't have to decide when a block is inserted whether it is to be an xref.

7. Blocks can be set to update individually or by directory.

8. Blocks can be exploded without binding them.

9. Blocks use the layers already present in the drawing. If unique layer names are needed they can be created in the block, but this is not invariable.

10. Auto-update blocks can be xclipped like an xref block.

11. Regular xrefs are still available for situations in which they are more appropriate – typically large files used in several drawings should be xrefed to control the resulting file size and shorten load times.
 Blup warns you of missing external files with a pop-up window, unless a batch is running. If this irritates you it can be turned off by appending a vertical bar and an asterisk to the name:
Block name | * ; comment

Although it might be a better idea to figure out where the block is.
Blur
 When I first encountered the lisp program Attredef (which is included with AutoCAD) it seemed like black magic.

 It still does, because in a curious parallel to my complete lack of success at changing my coworkers into frogs and making gold from lead, I am totally unable to make Attredef work. Although I couldn't find anyone who shared this problem, or anyone who had ever tried it, I decided to write a block replacer so that I could design it to match my own preconceptions. Blur is the result.

· Blur asks for a block name to replace, and for a new block name. In each case you can either type a name or select a block.

· If the new block isn't defined in the drawing it searches the Acad path and - if one is found - offers to use it.

· If there are any default attribute values in the new block definition Blur asks whether to use them in the event that there is no string in the attribute being replaced.

· Then it asks whether to replace the attribute values: By tag name/In the order in which they occur/In order but ignoring empty strings in the original block/Use only the default values or Leave all the attributes empty. (Only one of the last two options will be offered, depending on whether the user wished to use the default values.)

· Finally it asks at what scale to insert the blocks. If only <Return> is pressed each block is inserted at the scale of the one it is replacing. The rest is automatic.

 Blur is very quick and simple to use, despite this description. But if a program isn’t easier to use than to describe then it was badly designed.

Blurb

 A variation of Blur for use in script files (See Fang.) You have to edit the file to give it the names to use: the old and new block names are on lines 37 and 38 in the file, 37 is the name of the block you want to replace, 38 is the new block. When you run Blurb it replaces every insertion of the first block with the second one.

 Attribute values are extracted from the original block and placed into the attributes of the same name in the new one, if there is no similarity between the attribute names then change the word “Attribute” on line 48 to “Order” and Blurb will reinsert the attribute values in the original order.

 Many people won’t use a file if it has to be edited, I am in the process of modifying Blurb so that it uses a very simple external setup file.

Blurss
 Exactly like Blur, but replaces only selected blocks.

Boch (renamed from Ball to avoid a conflict)

 Rearranging lines in a bill of material is irritating – if you want to move line 5 up to become 2 you have to manually search out each 5 and change it, because it is usually a bad idea to do a global search and replace on a single character.

 Boch is a search and replace for Bom tag blocks, but only for entire strings, so changing 5 to 2 won’t change 15 to 12. It also saves and increments both numbers, so you can change 7 to 2, then 8 to 3, and 9 to 4 with a minimum of extra keystrokes.

 Boch also contains Ftag, which draws temporary marker lines from selected text (presumably numbers) to the matching Bom tag blocks.

Bock
 Cloud text and/or attributes in blocks: instead of laboriously drawing a rev cloud with Cm, select the blocks and text you want to cloud, Bock makes a rectangular cloud which encompasses all text and attributes, ignoring everything else. This is especially useful for clouding lines in cable schedules and other charts.

 See Cm and Cs.

Bolt

 Radio links on communication diagrams are usually represented by a jagged lightning-bolt line. You can do them by hand, but Bolt can make them more quickly and neatly. It includes four commands:

Bolt - pick two end points, draw a lightning bolt.

Blit – make an existing line into a lightning bolt.

Blot – make a lightning bolt back into a line.

Salt – make a line into a slightly shorter line, so that you can draw a line between your transmitter and reciever, shorten it so that it doesn’t touch them, and then make it into a bolt with Blit.

 If you need to do a satellite link there is a satellite block under Files>Other>Satellite.

Bomb

 Rotate text 180(around their common centre point. Pick several text entities and they will rotate as a unit.

 Other drawing rotation utilities: Brat, Brot, Derot, Bingo, Dart, Lineup, Tork.

Bomex

 Extracts Bom tag data from all bom tag blocks in a drawing to the file C:\Bom.csv, in the form Tag_number, count, i.e. 4,2. Quantity tags x2 etc. are counted as 2 (or whatever number is used), any A/R or Typ. Values are counted as A/R, and adding any number to A/R gives A/R.

 Further extractions are added to existing ones so that Bomex can be run as a batch with Fang.

 Further Bom tag utilities: Bomp and Boch.

Bomin
Suck a .csv file into BOM blocks. This is located in the Bom Import section under the Blocks pulldown menu. The steps are:

1. Insert the BOM block, it is designed to go in the upper left hand corner of the drawing but you can put it anywhere you like.

2. Explode it.

3. Use Bomin (from the same pulldown) to import a .csv file into the BOM area, and Lamicoid to import one into the Lamicoid area.

Bomp

 An experimental program for counting BOM tag numbers.

 Bomp is supposed to be used to check your work, not as a replacement for actually doing it, but this presents an interesting dilemma – should one write programs which will return questionable information if they aren’t carefully used, knowing that a program which can replace quite a bit of drudgery is likely to be used to do just that, rather than as a check after the drudgery has been done?

 Bomp requires that BOM tags are carefully filled out, that none have been exploded, and that they are all the same block and not just blocks that look similar but which came with the drawing the current one was copied from, and that there is a BOM tag everywhere that there should be one.

 Bomp places a temporary marker over each block as it is counted, so it is a good idea to zoom extents before using it and make sure that it caught them all. It counts any blocks which don’t have a quantity attached as 1, and if a block contains “Typ”. then Bomp returns No Total for all of that number. It currently works only with numbered tags.

 See Boch which can increment Bom tags.

Boo
 Lost in your drawing? Too many little detailed areas and you need to zoom out but then won’t know where you were before? Boo zooms to extents and then draws a temporary box around where you were. Sounds silly and will save you from total disorientation and panic about twice a year.

Bounce

 The purge command (see Splurge) cleans out unreferenced blocks, text styles, and other debris from a drawing, making it smaller, quicker to load, and easier to email. There is another way to purge a drawing: wblock it out to a file.

 Acad has the ability to wblock a drawing to the same name, leaving a very completely purged file: call –wblock on the command line, and when asked to select entities enter *. Then quit the drawing without saving (which would immediately overwrite the block you just created) and open it again.

 Bounce automates this procedure: it wblocks the drawing back to itself and then reopens the file, leaving you exactly where you started but with a cleaner file. Bounce also checks for Xrefs and asks, if any are found, if you want to continue. Bouncing a drawing with xrefs seems to work fine, but at one point it was suggested that this might not be a good idea. It appears that the problem was caused by some other factor, but it might be a good idea to be careful anyway.

 See also Splurge and Beaker.

Box
 See Bx.

Brac, Brc
 There are a number of bracket drawing programs floating around, most of them awful. I like to think that this one is a superior alternative rather than an addition to the debris. Square brackets, by the way, are ugly, despite assertions that a real man doesn't use anything else. (Sorry, Jack.)

 Later: the “half outline” method Brac uses – pick two corners of a box, the first one becomes the vertex of the bracket, the second the end of one arm – was fast and elegant, but less than ideal if you didn’t know where the midpoint of the bracket should be, so Brac.lsp now also contains Brc – pick two ends of the bracket and indicate the open side. Brc uses a standard arc radius of 2.5 x Dimscale, and can draw a bracket at an angle, something in which there has never been the slightest interest. (Are you happy now, deBruyn?)

Bracket
 Draw a bracket on the end of two lines – like Brac, but you select the lines and it does the rest.

Brat

 Derotate the attributes in all inserts of one block, but leave the block untouched.

Brot

 Rotate all inserts of one block 180(around their insertion point.

BSA

 Beaker, splurge, and Audit. Also kills empty groups and corrects the case on layer names so it’s not so obvious that half of your drawing was copied from another job using different standards. (As a general rule lowercase with initial capitals is much more legible than all caps. We’re not going to start using this in the drawing text, but for dialog boxes it’s a major improvement.)
Bsarn

 Batch search and replace for block names, to be run with Fang.

 See Sarn and Fang.

Btray

 Draw and hatch a straight tray section. Like Box, you can draw the section either by indicating two corners or by indicating one corner and a length and width.

 If the segment is too large then the hatch command will fail – it will only draw a certain number of entities in a hatch, and the dot pattern produces more entities than other patterns. In this case you should do smaller areas at a time (use the tray hatch command under the Hatching pulldown), erase the borders and make them all into one.

Bullet
 Suck data from all of one block to a .csv file: pick one of the blocks, give it a file name, the contents of each block of that type will be extracted to the file, one block per line, with commas separating the values. The data from the highest insertion of the block is read in first, and the rest follow in order of decreasing Y coordinate.

 Bear in mind that if there are any values containing commas they will have bad effects on the file – Bullet will work fine, but if you suck the results into a spreadsheet then the values won’t be in the right cells.

 See also Candy which can reverse the procedure, and Cable which is a specific solution for cable schedules.

Bungee

 Save the state of the layers both within the drawing (for the duration of the drawing session) and to a file for later restoration. The file is located in the directory with the drawing and is named after the drawing but with the extension .ddl. (The layer command can now do some of this, but it still doesn’t save to an external file.)

 Bungee also contains:

Splash – Restore the state of layers from the temporary list in the drawing. This will only work until you close trhe drawing.

Flash – restore from an external .ddl file which you select with a dialog box. Flash ignores any file names in xref layers so that you can use .ddl files on drawings other than the ones they were created from and still have some expectation that they will work.

 Note that you have to be careful of multiple lines in the .ddl file which equate to the same thing – if there is a layer in the file called Text and one by the same name from an xref then you will be setting that layer and any Text2 layers in xrefs twice.

Flasho – restore from a .ddl file, but only use exact layer name matches.

Layup – restore the layer state from the file Layers.txt, which you can make by using Bungee to create a ddl file and then renaming and possibly editing it. Layup can then be run from a batch or set in Local.lsp to run whenever a drawing is opened.

 See Layupp, which is a separate version of Layup that Fang can run as a batch.

Bx
 A "draw a box by picking the two opposite corners" routine. Displays all four sides of the box as the second corner is dragged into position, or allows input of height and width numerically.

 Acad sometimes includes a function something like this but it seems to change at random with each release; I ditched Box at one point but had to unearth a copy when the latest Acad one became too brilliant to be of any use.

 Revised: Renamed to Bx from Box since the Acad Box command now makes a 3D solid.

C

 Enhanced copy: turns snap off while you select things to copy and then restores it to the previous state when asking for copy points. Also makes multiple copies the default, it being easier to Return or Cancel when you are finished than to turn on multiple when it is too late.

 Revised: C now collects all copied entities and makes them the previous selection set, since it is more common to want to recolour or otherwise change the new entities than to want to work on the one they were copied from.

 C also contains Ni and Since: Ni sets a marker, Since collects any entities created since the marker was set and makes them the previous selection set.

Ca

 One of the nice features of the Arc command is that you can continue smoothly from an existing arc, for instance if you are tracing round a logo so as not to have to bother with image files. Unfortunately you can only continue from the last arc you made, and if you modify it the new one will continue from where it was before it was changed.

 Ca lets you select an existing arc or line and continue smoothly from there. The continuation starts from the end closest to the pick point.

Cable

 Import a .csv file into a cable schedule. This requires a cable schedule drawing and block, and a matching spreadsheet, both of which can be had from Rocket.

Cabx

 Attaches extended entity data to text and attributes so they can be updated from an external database file, or so that values in a drawing can be written to the database file. This is very powerful and fairly complicated, full instructions are in \Rocket\Cabx.doc.
Cala

 Rocket makes layers as it needs them, and you can make any one by clicking its name under the layers pulldown. This scares people who think that you should have every possible layer in the drawing at all times, probably because there are packages that will crash if they can’t find the layer they expect.
 Cala makes the full set of Rocket layers. I’ve actually used it, so maybe they were on to something. You can edit it and add the names of layers to create, but the layer data has to be added to Malaya.lsp. This isn’t an arbitrary decision, lots of routines make layers and they all read it from Malaya so changes only have to be made in one place.
 It also means you can modify the colour and linetype of any layer Rocket uses by changing Malaya. Note that Malaya contains a lot of layer data, because no two companies use the same layers and really it’s rare to find two drawings that do.

 See Malaya for other things it can do.

Candy
 Show Candy a .csv file, select a block, indicate a vertical distance between insertions, Candy will suck the data into blocks one at a time until the file is finished. It doesn’t care if there are too many fields for the number of attributes, or if there aren’t enough, if it goes off the bottom of the page, or if it sucks a bitmap into a cable schedule – computers are supposed to handle the drudgery for you, not the thinking.

 There are a number of programs that can do this with a dedicated .csv file and matching blocks on a properly designed border, fill multiple columns, and make new pages when one is full. Candy can’t do that, but it can handle any file and block without modifications to the code. This is in many ways a superior solution, since dedicated programs require people to use the standard spreadsheet and the drawing with the correct border and matching blocks - in other words to follow the standards and pay attention. Candy doesn’t care.

 See also the matching program Bullet, which sucks data out of blocks into a .csv file. Those from the North of England will understand why the two file names match.

Cap

 See Pac.

Cat
 A routine for the purist - Cat finds any free-floating attdefs in a drawing and replaces them with text. A surprising number of drawings have loose attdefs being used instead of text; they are irritating to edit and hard to locate.

 I had considered making Cat, Beaker, Splurge, and Audit run in each drawing as it is opened, but the mayhem that would result if this was done to wrong drawing convinced me otherwise.

 If you are one of those who like to explode blocks without creating a variety of naked attdefs, see Blam.

Centre
 Convert text to centre justified text: select the text entity, hit Return to use the original insertion, pick two points and the text will be placed at a point halfway between them, or pick a point and Return and the text will be centred there.

 If you can't be bothered to read all this then just try it out.

 See also Vbc which can centre rejustify a column of text.

Cf
 Vertically rearrange text in a box – select the text, pick the top and bottom points (or just one point) and input a line spacing, the text is respaced and centred either between the points or on the single point. Very useful if you are working on awful drawings.

Chall
 Like AutoCAD’s original Chgtext, Chall finds and replaces a given text string with another, but it does every attribute and text entity in the drawing. Sometimes one prefers fast to precise.
 See also Fand and Repall.
Chalm

 A variation of Chall which also changes text and mtext contained in blocks.

 See also Mepall.

Chart
 Make a chart from a text file. See the more elaborate instructions elsewhere in this manual.

Chat
 Explode and reblock a block. Pick the block, which is exploded. It is best to do this to an unscaled block, but chat will scale it back to 1:1 otherwise. Make any changes you want to the block. If you want to add new entities then copy them into place, merely moving stuff on top of existing things doesn’t work.

 Then run Chab, which will reblock the entities, either to the original name or to a new one, which makes a new block.

 AutoCAD now includes the ability to modify a block in place, but having tried to use it I find it so convoluted as to be nearly impossible, so I still use Chat/Chab, and include it here.

 Chat can by the way explode a block, then explode a block contained in the first one, and allow modification and reblocking of them in order.

Chgtext

 The original search-and-replace, from the days when there was no other way to modify text short of retyping the whole thing. Later versions had so many options that the basic function tended to get lost in features, so here is the original.

 Select text, enter old and new strings, that’s it. I have modified it so that it remembers the search string and it tells how many changes were made in how many entities, if there are more changes than entities you should usually have a closer look at the results.

 Aliased to ccc in the acad.pgp file.

Clk
 Draws a simple clock, set to the correct time. I have used a circle as the face, but a line has been included in the file to insert a block called "Clk" if you want to draw one. (You will have to move the semicolon from the beginning of the "insert" line to the beginning of the "circle" line)

 People always ask on seeing this if the clock continues to keep time once it is inserted. It doesn't.

 Later: I have included the routine Glk, which draws a slightly more elaborate clock with temporary markers which will vanish with a redraw, pan, or zoom. It doesn’t autoload since no use suggests itself.

Cm
 Cloud maker: draws revision clouds. There are several of these available, but most need an existing polyline and all require that it be drawn in a specific direction.

 Cm draws a polyline while points are entered. A "U" causes the last segment to be removed, and a <Return> closes it and makes it into a cloud. The bulge factor (which controls what portion of a circle is drawn between each two points) is set to 0.9. This is higher than the usual 0.5 or 0.6, if you don't like it you can change the line (setq bulge 0.9) which just coincidentally happens to be the first line of code in the main routine.

 Revised - the direction finding algorithm is now much improved, and uses the method used by humans to determine where a point lies in relation to a closed line. If the polyline crosses itself all bets are off, since 1. it is impossible to say in this case which areas are supposed to be which, and 2. only an idiot would do such a thing.

 Revised again: now adds extra vertices if the main ones are too far apart, so that one can draw large clouds without having to pick hundreds of points. Thanks for insisting on this feature, Ana.

 Revised and expanded to include the following routines:

Cm - the original cloud maker.

Cn - Same as CM, but makes a narrow cloud.

Cb - draw a rectangular cloud from two corner points.

Cbn - draw a narrow rectangular cloud from two corner points.

Cs - Draw a rectangular cloud around selected entities.

Cx - Make an existing polyline into a cloud.

Cmr - Recloud the original cloud 11 times. (For greater emphasis - use with caution.)

 Revised again: apparently there are people want their clouds to look more mechanical, like the ones that Autocad makes. The point of clouds is of course to look organic and irregular, so that they stand out from the ideally more regular remainder of the drawing, but not everyone likes this. Cloud now draws clouds with random bulge lengths unless the variable Cloud is set to a number, in which case all bulge lengths are set to that number times dimscale.

 You can set the Cloud variable in Local.lsp, in Acad2.lsp, or in Cm.lsp itself: (setq cloud 5), or you could type it on the command line, make a button or a hot key, and so on. Although I’m kind of put out that I did all this extra work before I found out that you’re a pacifist, Nick, since I only did it out of fear. What are you going to do, nitpick me to death? Oh, hang on…

Cma
 Flatter cloud maker – essentially the same as Cm, but uses a smaller bulge factor. Cma is good for clouding in congested areas without having the clouds overlap things one might want to see.

 Largely obsoleted by Cn.

Cobra
 A modified form of Snake, which puts things on snap. Snake will not put a dimension entity on snap, Cobra will, you should generally use snake unless you are very sure what you are doing.

Coil
 Coil and tape block/text inserter: pick a line, Coil inserts the coiled up wire block and two lines of text: “Coil and tape xxx spares.” You have to change the xxx to a number. Actually you don’t have to, but it is a bit neater.

Cols
 Pick some entities, pick one in a colour you like, the first ones will be made to match the latter in that respect. If of course your drawings are coloured by layer rather than by entity you will have to use LCH instead.

 Many people like the new change properties dialog box, but I don’t as a rule like to give up a third of my screen space to something that is slow, irritating, and almost a textbook example of poor interface design. Using a computer program should be like driving a sports car – something that is smooth and graceful and in which you can immerse yourself. The Windows interface urges people to obliterate the graphics screen with toolbars and dialog boxes until it’s more like building plastic models through a hole cut into the lid of a shoebox. Possibly this will pass with time…

Comb

 Someone redesigned a block – usually a title block – and you’d like to know what they did to the attributes so you can figure out how hard they’ll be to swap out.

 Insert both blocks and run Comb, it draws temporary markers between matching attribute tags. If you get a lot of parallel lines you’re in luck, more often it looks like a spider web.

 Comp does the same thing but by position – attribute 1 is connected to 1, 2 to 2, etc.

 See also Flap, under Foap.
Coo

 Draws and inserts a N & E coordinate string. Works in either model or paper space, but always uses model space coordinates. Assumes that 0,0 really is 0,0.
 Includes Cot - update an existing coordinate.
Cord

 Append model space coordinates to matchline text around a viewport in paper space. Very useful. Part of Vbox.
Cotx
 Places selected text in centre justified columns, the top of each starts at a common Y coordinate, the text in each column is vertically respaced from there.
 This is for neatening up the stacks of text at the bottom of a single line, but it is probably good for other things., even though none come to mind.
Cr
 Circle Repair - makes an arc back into a circle.

 Revised: also does ellipse entities, but not polyline ellipses.

Crab

 Crab is for aligning leader lines between instrument blocks and tags. Select two circles or blocks, and a line. The line will be moved to be perpendicular to both circles, or if a block was selected to the largest circle in the block. If the block doesn’t contain a circle then the insertion point of the block will be used.

 Crab is similar to Pur, but requires less input: rather than requiring each of the entities to be selected individually Crab will accept a windowed or crossing selection. You can also select only the line and Crab will search for the nearest block or circle to each end of the line.

Crypt
 This is a text encryptor. Explaining how it works spoils it to some extent, but it isn’t that obvious what is going on.

 Crypt asks for a text file and a point. Each line in the file is split into two text strings containing alternate letters interleaved with spaces, then two text entities are made, one for each string, and placed on top of each other starting at the indicated point. The text is drawn in a style based on a monospaced font so that the letters line up perfectly. Then one of the two lines of text is mirrored horizontally about a vertical line passing through the point. When this is printed out it looks like gibberish, but folding the print in half so that the text is on the inside and holding it up to the light allows it to be read again.

Cspi
 Draws a multiple counterspiral of stars in temporary lines. A redraw will erase it. Utterly useless.

Csv

 Sucking spreadsheet data into a drawing is a fairly painstaking procedure. You could use OLE, but you could also try to run a diesel engine on mashed bananas.

 Csv imports a csv file (you can Save As most spreadsheets and databases to csv format) into a drawing as columns of text, split into individual text entities at commas. Columns can be respaced and moved into charts, or sucked into existing text and blocks with Gostak/Go.

Curl
 Moves selected entities to the current layer. I have been informed that this is of no use whatsoever, here it is anyway, mostly because it gets used a lot.

Cw

 Rewidth all cloud polylines to 0.75 x Dimscale. This is necessary now that the relationship between colour and plotted polyline width has become uncertain. Also contains WC which sets them all back to 0 width.

Cyl
 The opportunity to draw steam engines doesn't present itself as often as it once did. One does see side views of cylindrical objects, though, and quite often the lines indicating curvature are unevenly or carelessly placed.

 Cyl allows you to draw an edge-on view of a cylinder exactly as it would appear if it had lines parallel to the axis inscribed at regular intervals around the outside. If this doesn't seem worthwhile then you are a philistine. If it doesn't seem intelligible then try it out.

Dart

 Another drawing rotation utility – select a block and all blocks of that type will be derotated.

Dasho

 Change strings of the form 2010.09.09 to the less desirable 10/09/09 in a whole drawing.
 Oshad reverses this.

Datt

 Every drawing should have some indication of what the file is called, where it is located, and when it was last worked on. Datt places a block which displays this information in drawings with known title blocks and updates it whenever the drawing is opened. It has to be set up for a given title block, which we can do for you, and it will save a lot of time and frustration.

 Years later: Acad’s drawing stamp will also do this, but while it finally works it still doesn’t work very well.

 Later again: Acad’s plot stamp feature really finally works now, but still not that well.

 More years later: Datt has been causing problems with batch files, and now is fixed. Apparently the problem was people not complaining enough.

 See Ddt which kills the data blocks and which can be batched.

Daub

 Set a drawing up so that the dimension style is exactly how you like it, then run Daub to write a routine (you choose the name) to set up the dimensions in other drawings to match. Very useful because dimensions are painful and tedious to set up.

 See Gdim, which was made with Daub and which contains a pretty good dimension style.

Ddd
 This is a companion to Tater: it places three dots “...” in every empty attribute of every selected block, so that you can use tater or deep to edit them even if there is nothing there. Thus you can edit title and other blocks directly without having to search through the ddatte dialog box and figure out which attribute corresponds to which prompt, something which may be difficult if the prompts “Client,” “Client Name,” and “Enter Name of Client” are all found in the same block, or worse yet if they are all “X” or sequential numbers.

 Running Ddd again on the same blocks toggles the dots off again, and the included command Dddd removes them without adding any to newly emptied attributes, so it is safer to use the former to insert them and the latter to remove them.

Ddx
 Ddx prompts one to select text to edit. If the entity picked is text or an attdef it calls Ddedit, if it is a block Ddx calls Ddatte. This sounds like a waste of time, or at least it did to me when MI suggested it, but I now use it for almost all text type editing. Ddx is aliased to D in Acad.pgp, you can thus edit the most common entities with a single keystroke. Double-clicking also works, but the edit boxes are often inelegant and one gets pretty tired of double clicking.

Dent

 Have you ever had to use blocks where every single attribute prompt was prefaced with “Enter”? This is very nice if you don’t know that you are supposed to enter a value, but can be confusing if you are editing an existing one. Suppose that you were a power user – someone who can read and who has been using a computer for more than ten minutes – you might want to simplify things.

 Dent is a search and Replace for attribute prompts in blocks which have already been inserted, and can take care of this and many other problems. There are a few special cases detailed in the file header which I won’t reproduce here.

Deep
 Select text or an attribute, edit it with a dialog box. Deep also allows you to copy the text out of another entity, modify it, and put it into the first one. Aliased to De.

 Note that Deep will also work with lines of constant text in title blocks which shouldn’t be editable – it is very powerful. Surprisingly it isn’t often misused, as most people assume that if they shouldn’t be editing something then they probably can’t.

 See also Ddd, which was made to work with Deep.

Derot
 De-rotates blocks. If you really can't figure out what that means, try it out.

 Revision note: Derot will now also work with Text. Circles and points you will have to handle on your own.

 Later Revision: Derot will now remove the obliquing angle from text so that it can be used to make iso text back into normal text. (See Pit and Pivot for rotating text through the isoplanes.)

Descale

 Remove the scaling from a drawing. Scales everything down by whatever the scale factor is, and resets Dimscale to 1. See also Scaler, which does the opposite.

Detitle
 Insert a detail title. Fairly self-explanatory.

Dg
 Destroy all groups containing a selected entity. This doesn’t affect any of the entities in the groups, it just kills the groups themselves.

Diaper
 Search & replace layer names. This isn’t often useful, but there are times when you want to make a global change. Also contains the utilities Lance, which changes all layer names to upper or lower case, and Bloot, which prints out the layer tables. The name may have been a mistake - Diaper was made to clean up a set of drawings which were absolute crap. Sorry.

 See Larn, which has several layer case adjustment functions.

Dif

 Extract distances from drawings. Keeps a running total distance while you pick points, if you enter P (Point Reset) then you can start again from a different point without resetting the total, if you enter T (Total Reset) the total is reset but not the point. Useful when someone says, “Quick: how far is it from the 25W TEG to the 1200HP electric drive screw compressor? I’m worried about voltage drop.”

Dimf
 Dimf restores the default value to a dimension containing an arbitrary string. This is useful when you either want to know what the correct value is or so that you can stretch it and have it automatically update.

 Also contains TL – draw temporary lines.

 Side note: why doesn't the List command print the true value a dimension should display rather than just noting that the displayed one isn't correct?

Dimp
 Select a dimension entity, pick a point, the nearest extension line to the point will be changed to the same perpendicular distance from the dimension line as the point. In other words, Dimp allows you to change extension lines without using the stretch command and having to work around other entities, which are presumably present, free-floating dimensions being uncommon.

 Note: it is usually easier to manipulate dimensions using grips, but every so often one finds a situation in which dimp is the neatest way to do the job. Whether or not this makes it worth remembering I am not sure.

Diss

 DImension Standard Style – changes all dimensions and leaders to use the standard style. Electrical drawings don’t typically use dimensions to the same extent as say piping drawings, so it is often tempting to make do with anything reasonably close rather than spend a disproportionate amount of time getting them right. One of the worst things is getting everything set up only to find that the dimension you are trying to change is in another style.

 Since it is quite unusual to need more than one style of dimensions, here is a quick fix.

Dn
 Can’t purge a block? Dn asks for a name and prints out the nesting of all occurrences of that block within others. Useful for making prototype drawings where everything has to be exactly right, and for finding out exactly what is in your drawings rather than having just a general idea.

 Revised: Dn now offers a dialog box for block name selection, and is largely obsoleted by Dna.

Dna
 The same idea as Dn, but displays the nesting of all blocks in the current drawing in a dialog box.

 Also contains Dnax which writes the same information to a text file which is named after the drawing with the extension “.nest” and which is located in the directory with the drawing.

Dogbite

 Chop around a circular block. Select the block, Dogbite finds the biggest circle therein and chops away everything that comes within a reasonable distance of it. Used for cleaning background stuff away from equipment tags and similar blocks.

Doglite
 Chop around a light block – the same as Dogbite, but cuts further away to allow for the little lines coming off the circle, which I have always assumed were supposed to be individual rays of light.

Doon
 Install a conduit down symbol, either on a line or at the intersection of two perpendicular lines. Either pick the two lines, the top one first, or pick one and then indicate the direction of the open side of the block.

 I recently had a complaint that this didn’t work (Hi Dave) but when I demonstrated it, it did. There is a tendency to put in a large number of prompts so that there is no doubt about the expected input. A better approach seems to be to keep them to a minimum so that the operator doesn’t become irritated as soon as he becomes familiar with the program, but if the prompts for a given program don’t suit the user’s intuitive idea of how the program should operate he is going to have trouble.

 The answer is either to spend a few minutes playing with a program or to complain to the programmer. Actually the latter is probably the best course.

Door

 Draw a door. Speaking of intuitive prompts (see Doon if you aren’t reading this sequentially) Door attempts to get by with much less information than other door programs. Pick the hinge location – and the point here is that a door swings toward the hinge, so once you know where the hinge is you know most of the geometry – and the other side of the door.

 If both points are on the same line it isn’t possible to say which way the door will swing, so the program asks for an angle and uses the picked point to determine the door angle and the direction in which it will open. If they are on different lines then they are taken as two sides of a wall and the door swings out from the one on which the hinge point was located.

 Door then asks for a door width, and if this is different from the default (the distance between the two points along the wall line) adjusts the position of the point which isn’t the hinge. Then it asks how many doors you want (1 or 2) and offers 2 as the default if the width is greater than seems reasonable for a single door.

 This seems complicated, but two picks and two returns should allow you to make a door in about two seconds, which should save you about a minute a day, so take a long lunch whenever you use it.

Drawlist

 Suck a .csv file into a drawing list drawing. You can use a script to run a program which extracts the requisite title block data from each file in the set, but such a thing is, as manuals typically say, “beyond the scope of this document.”

 Later: See Trout, which does exactly that, and Candy, which sucks a csv file into blocks.

Dread

 The File menu has the two entries Import Redline File and Kill Redline Layer. The first imports an .rml (redline markup) file produced by Voloview into the current drawing as standard entities placed on the “_Markup_” layer. This is very useful for collaborating with someone who doesn’t have AutoCAD, as Voloview can be downloaded from the Autodesk website, and the markups can be pulled directly into the drawing they refer to.

 Markups can be erased either as the changes are made (you will have to unlock the markup layer) or all at once when you are finished – Dread does this and purges the markup layer. It also contains the utility MF which unlocks the layer, changes the layer colour to Magenta, which is less used than the Red which it is created in and which is thus more visible, explodes all mtext, and resizes all text to 2.5 x Dimscale, since in some of the examples I have seen the text was too small to read.

 See also Mada, which erases only stuff on the Markup layer, and Lake, which erases stuff only from a selected layer and which is very useful – it’s like having a rake which will pick only the black socks out of a pile of laundry.

 Also Tk is useful for sucking imported text into existing entities and erasing the imported text entity.

Dtr

 Arrays blocks downwards, also calculates the size of the block and sets the default terminal block insertion point to the bottom middle of the last block in the array.

 This is the mechanism behind the terminals on the Blocks pulldown menu. Select one and a point and one of that terminal will be inserted, then Dtr will ask how many blocks and place the correct number under the first one. The bottom midpoint of the lowest one becomes the default insertion point for the next terminal.

 If you want to have a repeating set of say a terminal and a fused terminal you can call Dtr and select both of them, giving you a strip of the required number. This is useful both for quickly estimating the size of a stack of terminals and – using Fibl – for counting them.

Du

 Write a block updater lisp. Select the block you want to update, the attributes you want to replace, and enter the new values. Du will write a lisp routine (you also have to specify a name) which will make the same changes to other copies of the same block, so that you can repeat the process in other drawings without having to enter all the data again and again.

 See also Fang.

Duck

 I was recently working on a nicely laid out drawing and had to change some text. When I changed the first string I found that I had two different text entities one on top of the other. Every text string had an exact duplicate under it.

 The wise course of action would have been to do a quick fix and forget it, but the atmosphere wasn’t thick with wisdom so I wrote Duck, which finds duplicate superimposed text entities and erases all but one from each set.

 Was this worthwhile? Will this ever happen again? Yes, it will, because it already has. Which is not a positive comment on the either the high standards or the overall level of sanity in the design community.

Duf

 Finds duplicate drawing files in subdirectories of the current one. There are lots of freestanding programs which will do this, so Duf is more of a programming example. It was written to clean up an automation project which had gone bad due to idiots duplicating files without changing the names.
DUL/UL

 Dul removes underlining from selected text and blocks, UL puts it back, although underlining is a bit of a crude way to emphasize text when you have control over the height, font, lineweight, etc. Probably this is the work of people who secretly wish they were using a pen made out of a feather and a sheet of goat-hide. One sometimes finds text (often in lighting panels) which says “Voltage: 120/208 “ – apparently to give the impression that someone crawled inside the monitor with a pen and filled in the blank.

 Dul will clean up this type of nonsense even if it occurs in the middle of a string. (It won’t kill underlining which is a line drawn under a text string.) UL is just there for completeness and should never be used.

Dupe

 Similar to Duck, dupe finds duplicate text strings and attribute values in a selection set or a whole drawing, and draws lines between them. You can select either temporary lines, which are erased by a redraw, zoom, or pan; temporary sine waves which are more impressive but less practical, or polylines, which are more permanent.

 Dupe is very useful for comparing cables and conductors at various locations. See also Klob.

Dwob

 Recently we’ve been having problems with wipeouts plotting as black rectangles. There are dozens of permanent fixes on the net, some of them work overnight, some don’t. This is a last-ditch panic solution: it redefines all the blocks in the drawing without wipeouts. Now you can issue the package and look for a permanent fix later.
Dx

 Removes overrides from selected dimensions. If this doesn’t strike you as being very nice then you have an extremely high tolerance for irritation.

Earth
 Draws a circle centred on the current view and having the same diameter as the Earth. Immensely useful. If you don't try it at least once then you're not human. (Assumes that your drawing units are millimeters, but values for other units are provided in case you want to change this.)

Ecen
 Horizontally centre a number of entities – select the entities and indicate both sides of the space, they will move so that there is an equal space on either side.

Elsp

 Draw a spiral: elliptical or circular, increase arithmetically (by a certain distance per revolution) or exponentially (by an increasing distance.) Not written because it was going to be used constantly but because there was no other way to do it. Also it’s fun to play with, so here it is.

Em

 Shows the vertices and endpoints of a polyline so that you can see if it is really constructed the way it looks – in other words whether the endpoints are really at the ends.

 See Fx.

Emu

 Select entities, Emu writes a lisp routine to make them again. Takes up much less disk space than a block and is much less useful.

Eno
 Change text and attributes to incremented numbers with an optional prefix & suffix as they are selected. Very popular, very easy to use. Although really we try not to have any programs which are more difficult than just doing things by hand – people might not use them.

Epi
 Epi is short for epicycle - the curve traced by a point on a circle as it rotates around another circle. Epicycles were invented by Hipparchus around 140 BC to explain the movement of the Solar system around the Earth, since with the exception of the sun and moon nothing seemed to follow a circular path.

 A Spirograph is actually a mechanical epicycle generator; Epi does the same thing, but is much more flexible and less prone to skipping a tooth or having the pen come out of the little hole, and you can play with it at work without your co-workers realizing how tenuous your grip on reality really is.

 Epi will prompt you for the sizes of the two circles, whether you want the moving circle inside or outside the fixed one, the eccentricity (the distance between the pen and the centre of the moving circle) and various other numbers.

 It will also draw the circles if you want so that you can see how the finished pattern relates to them.

Exget
 Ever wonder where in a hatch definition the name and scale are stored so Bhatch can copy them? I didn't really think so, but now that the question has been raised, here is the answer: extended entity data can be attached to any entity and contain a variety of data types. It's like being able to attach invisible attributes to a line or circle. The possibilities are amazing - any entity could tell you when it was created, what block it was part of, who made it, what layer it was supposed to be on... So can Exget do all these things? No. But it can tell you if someone else has done them to an entity. The rest you'll have to wait for.

Extro

 AutoCAD used to include a utility to write text out to a file, and since people are finally beginning to realize that it is better to move data between programs than to re-enter it manually, here is a new one. Select text and a file name and Extro writes the text out to the file. It also puts an X over each string and draws a marker line between them so that you can check the order in which they were written.

Ezlay
 Another small particle in the sediment of attempts to deal with layering. There is a whole page (32) on Ezlay which I will not duplicate here. This is aliased to Ez in the pgp file both to save keystrokes and avoid upsetting those who read sexual connotations into everything. (Except JB, who it was designed to irritate and who completely missed it.)

Ezo

 Have you ever wanted to change the colour of a block but couldn’t? Or wanted to get rid of all the layers contained in a block but not wanted to explode them all?

 Ezo moves all subentities in the definition for a selected block to layer 0 and colours them byblock if they are coloured bylayer, allowing you to purge the excess layers and to colour the blocks however you want.

 Ezo passes the acid test for a good routine: would the person who made the block approve? No. So it must be good.

Fand
 Text and attribute search. Originally written to see what Chall would do before running it. If a string other than Y or N is entered directly at the "Case sensitive?" prompt, it is taken as a non-case-sensitive search string. AutoCAD now has a built in search and replace function, but I prefer Fand, so it is still included.

 See also Chall and Firk.

Fang

 Writes a script file to run lisp routines on a directory of drawings. See the more detailed instructions earlier on.

 See also Du, Bap, and Np.

Fb

 When other break commands aren’t enough: select an entity and a point, breaks the line at the point. Similar to the Break @ command in the Assist pulldown, but doesn’t use osnaps. Are you happy now, Kyle?

Fbt

 Find Bad Text – find and mark text, attdefs, and blocks which are not at an acceptable angle. Useful for rotating neat drawings or cleaning up strange ones.

Fcase

 Convert text to all lower case with initial capitals. This doesn’t get used much since draftsmen like to do everything in capitals, which is probably a habit left over from the days of manual drafting. A mixture of upper and lower case seems to be easier to read (notice that this manual isn’t in all caps) but we are a very traditional bunch, especially now that we have computers.

Ffind

 You can find what version of a given file you are using with the file search function (findfile “afile.txt”), but it can only find an exact match and is a pain to type. Ffind tries to find a file and then tries using a variety of extensions. If you have ever reloaded a file six times and then realized that Acad had found another version earlier in the search path you will appreciate this.

Fhk

 Fixed height kill. I have never seen a practical use for fixed height text, but it shows up in drawings and it’s irritating. Fhk searches for fixed height styles and makes them variable height. It runs automatically when you start Rocket.

Fibl

 Find blocks - prompts for a block name, then inserts a temporary X over the insertion point of each occurrence. The marked blocks become the "Previous" selection set in case you want to do something with them once you know where they are. This routine does not do a Zoom All before placing the X's, since many people object to programs which change things without asking, but it is a good idea to have the entire drawing on screen before searching it (unless you want to count the blocks but don't care where they are.)

 Revision note: If no block name is specified Fibl will now mark all blocks in the drawing.

 Second revision note: Fibl now allows the user to set the size of the marker X's, so that they don't overflow the screen if only a small area is displayed.

 Third revision note: Fibl now allows either entry of a block name or selection of an example block. As a result it now takes one extra <Enter> to get to the "Mark all blocks" stage, but this doesn't seem too awful.

Fifty
 Schematic drawings with line numbers present a special problem – if the line numbers change then every wire tag, terminal number, and relay or other device which depends on them must also be renamed.

 Fifty replaces the original first line number with the new one in the selected entities (or everything), then increments the two numbers, and repeats the whole process fifty times, hence the name.

 It also puts a coloured temporary marker at the insertion of each thing it changes and changes the colour with each number, so that you can see if anything goes wrong – if the colours on a line are all different or if they show up wildly all over the place then you may have a problem.

 Does this mean that Fifty can take a tedious process that takes hours and run through it in a few minutes? Yes.

Filk
 Search & replace the last character in all selected text and blocks. More useful than you might think.

 See also Firk, which does first characters.

Filo
 A simple routine which takes a set of entities and writes their data out to a text file in the format returned by entget.

 "But what use is this?" you ask. Well...hmmm...you could make a printout of the resulting file and leave it on your desk to baffle the unwary. Or make a program which takes the data and makes a script file to make the drawing as you watch - this might make an interesting demo.

 The only practical thought which suggests itself is to write selected entity data out to a file and then use it later to restore the entities to their condition at the time the routine was run - sort of an entity specific Undo. The entities would have to be accessed using handles since there is no way to make a string read from a file back into an ename, but this would provide a way to undo changes to entities even several drawings later. (If they had been deleted they could be reinstalled with the entmake function.) One could also edit the entity data with a text editor and update the entities…

Filthy
 Fibl's twin (fraternal): finds and marks the insertion point of any entities of a given type in the entire drawing, or optionally everything in a drawing. Written to locate invisible entities, but probably has many other uses. Maybe. You can quite often find interesting patterns by zooming 0.1x and then running filthy.

 Revised: Filthy now finds entities only in the current space.

Fint
 Find entities by insertion point. When you have run Filthy to try to deal with a strange zoom problem and found several hundred invisible entities way out in space, you can pick their insertion points with Fint, indicate how far off you may be, and then see what they are from the resulting entity data listing.

 Fint also offers to erase the things it finds, but this is generally not a good idea.

 See also Beaker, which erases a large variety of useless and invisible entities.

Firk
 When supplied with a character to find and one to replace it with, Firk changes the former to the latter every time it occurs in the selected entities (text or attributes) if it is the first character in the string or the first one after the %%u which underlines a string. You will probably either find this very useful or completely pointless.

 See also Filk and Chall.

Fist

 Prints a list of all text styles in the drawing, which fonts they use, which blocks contain text or attributes or sub-blocks which contain text etc., which linetypes and dimstyles contain which fonts. Useful for the purist and for odd drawings with too many text styles.

 See also Shag, which does the same thing but with shapes, which are much more irritating.

Flame
 Freezes all layers in a drawing except those containing selected entities. If nothing is selected Flame will thaw all layers and tell you how many there are, which is sometimes surprising.

 See also Flay and Yalf.

Flat

 Entities in drawings sometimes do not behave properly - typically lines have no intersection even though they appear to cross. This is often because someone has drawn part of the drawing at an elevation other than zero, which is understandable if the drawing is a 3D version of a building, less so (but perhaps more common) if it is a wiring schematic.

 Flat will move any chosen entities and subentities back to ground level. It is also useful for squashing drawings done in 3D if the urge overcomes you.

 Later note: Flat won’t flatten 3D solids or other entities. A program to do so is in the works, but the matter is more complex than it appears.

 Revised: you can run Flat in a batch, in which case it flattens everything in the drawing. I’m not saying that this is wise, but you can do it.

Flay
 Pick an entity on a layer, Flay freezes all the layers but that one. It thaws all layers first, since it is difficult to select something on a frozen layer.

 See also Ezlay.

Flip
 Swap an open device for the matching closed one in an I/O schematic, or vice versa. Also swaps wire tags between single and double sided in case the sight of a tag hanging off into the air around a terminal strikes you as being wrong on some primal level.

 See also Typ, which does the (Typ.) string in detail tags.

Flood
 Floodlight maker. Pick a centre point and a direction, indicate how many lights you want (the maximum is 4) on the same standard. The resulting entity is a single rather convoluted but neat looking polyline.

Foap

 Select an attribute, Foap returns its zero based position in the block. If you don’t understand what this means then you probably don’t need it.

 Foap also contains:

Acho: temporarily replace attribute values with attribute tags.

Achox: permanently replace attribute values with attribute tags.
Defa: replace attribute values with the defaults.

Eb, put a dash in the first attribute in a block, empty the rest.
Fap: replace attribute values with sequential numbers.
Faap: append sequential numbers to all attribute values.

Flap, draw a polyline between attributes in a selected block, in order. Very useful for title blocks.
Xae: empty all attributes in selected blocks.
Xa-: replace all attribute values in selected blocks with "-"
Xad: replace all attribute values in selected blocks with "..."
Xat: replace all attribute values in selected blocks with "XX".
 See also Nn, which displays attribute data without exploding the block.

Fook

 Drawings often use several different text styles which are all based on Romans.shx. Fook makes the style Standard use Romans and then changes all text and attributes in styles based on Romans to use Standard, so you can purge everything else. Handy if you’re sick of nonstandard crap and text styles based on the names of companies you’ve never heard of.

Fop

 Find Open Polylines. You want a clean polyline set for laser cutting, or your hatches leak lines. This will show where you screwed up.

Fluke
 Fluke allows one to trim everything away from around a line of text, or from around attributes within a selected block, or around the text in an associative dimension.

 Easy enough. Now the small print:

1. If a block insertion is selected, Fluke will only cut around visible attributes, because otherwise there would be holes chopped in nearby entities for no apparent reason.

2. Fluke will not cut entities which can't be trimmed - blocks, other text, hatching, etc.

3. Fluke uses the same clearance that is left around text by the Hatch command - 0.25 x text height. Most of my colleagues didn't feel that this large enough, so I made several variants which differed only in the cut distance. This soon became ridiculous (a condition we already encounter often enough) so I rewrote Fluke. Each time you pick the same entity the cut distance becomes greater by 0.25 x height: after the second pick it is 0.5x, after the third it is 0.75x, etc. Pick a different text entity and it returns to 0.25x. (Picking something that wasn't either text or a block doesn't change anything.)

4. If you want to change the initial cut distance you can alter the initial setting of the variable Cutdis.

5. I can't remember where the name came from.

Front

 Bring entities to the front of the display list – generally useful for fixing stuff with wipeouts which is displaying behind something else. Most of these commands have been revised to use AutoCAD’s Draworder command, which has many options but is less convenient.
 Also includes:

 Back, move entities to the back.
 Fra, move entities to the front by copying them and erasing the original entities. This will change the order of attributes in a block, which the other methods won’t, and allows you to add entities to a block being edited with Chat/Chab.

 Frais, move entities to the front with copy, sequential pick.
 Fhit, move all wipeouts to the front, then all text.

 Fronts, move a single entity.

 Frob, move selected block inserts or all of one block to the front.

 Froh, which moves selected entities to the front but ignores hatches.
 Fhor, move all hatches to the back.

 Frot, which moves selected text (or all text) entities to the front.
 See Ato.

Fuj

 No matter how long a cable tag block is someone will make a longer tag name. The ultimate aim is to be able to build and commission the plant from the information contained in a single cable tag.

 Fuj adjusts the widths of selected cable tags to match the longest string any one of them contains.

 Fuu does them individually. It’s more of a sarcastic comment on not getting carried away.

Fux

 Repaths xrefs.

 Make a list of drawing file names with directories. \Rocket\Spreadsheets\Dirsub.bat can do this, the file will be called Xinfo.txt. Put it in the root of c:. You can cut these together, manually edit them, make them by hand.
 Run Fux, it will repath any referenced xref to the location listed in c:\Xinfo.txt.

Fx

 Polylines are often difficult to join, especially since the R13 rewrite of AutoCAD made vertex positioning a bit uncertain. Fx asks for two entities and joins them into a single pline. If their ends don’t touch then the nearest point on the second one to either end of the first one is moved onto the near endpoint of the first one. Then they are joined.

 In other words Fx forces two entities to join together.

 Fx also contains Em, which highlights a polyline and puts a cyan marker at each vertex with larger red ones at the ends, so that you can see what is really going on.

 See also J and Pj.

Ga and Gc

 Gc - install a ground conductor line with blocks on the ends. Ga does the same thing but with an arc.

Gdim

 Sample (but good – never offer someone a sample that sucks because it will become the standard) dimension updater program, made with Daub.

Get
 Prints the data for a selected entity to the screen. The default is the entity after the last one selected, so a polyline or block can be stepped through one part at a time. (See Chg to actually edit entities in this manner.)

 You probably need N rather than this.

Getq
 Good programming practice dictates that variables be declared local wherever possible, but going through the routine to find the setqs is tedious and error prone.

 Getq reads a file, extracts all the variable names, and writes them to a file named after the original file but with the extension ".var". It also puts the routine name in front, so you just have to append them to the lisp file and move them to the Defun statement.

 Aside from the input file name, Getq only asks one question: "Repeat variables after Defun?" If you answer Yes, any variables which are used in more than one routine within the file will be written to the .var file the first time they occur in each routine. If you answer No then a variable will only be extracted the first time it is found in the whole file. Caveats:

1. Getq doesn't search for arguments to place before the "/", so you will have to do that yourself, and if you have any variables which are supposed to be global don't forget to delete them from the list.

2. I don't generally use the multiple (setq a 1 b 2) format - I find it less clear, less attractive, and no faster than (setq a 1) (setq b 2) - and Getq won't pick up variables set in this way.

3. Getq has trouble with a function defined within another function, so you may have to manually clean up the results.

Gnd
 Put a ground grid around a building – pick both corners of the building, the rest is automatic. If you like this you can thank Jonathon Wu, who wrote the first really weird prototype version.

Gore

 Please ignore this. It makes hat patterns.
Gostak

 Originally written for importing data from external sources, named after Miles J. Breuer’s story, and aliased to Go.

 Gostak sucks attribute values out of a column of blocks and into text, or back and forth between any combination of the two. If the blocks have more than one attribute then you will be asked to select the one to use.

 The source entities will be erased and can be restored with Oops (aliased to oo). Modified: source entities are left untouched, if you want to erase them use Goo.
 Copy a column out of a spreadsheet, paste it into notepad, then copy it again (this is a workaround for Autocad’s passionate desire to use everything as an OLE object) and paste it into the drawing. Explode the resulting mtext, leaving a column of text. Now use Gostak to suck the text into a column of blocks. This sounds clunky but can save immense amounts of time.

 See also T3.

 Later: spreadsheets are better saved as .csv files and imported with Csv.

Gouge
 Writes entity data to a file like Filo, but does block (and hatch) definitions, which includes all attributes, constant and otherwise, and all non-attribute subentities - text, lines, that sort of thing. The stuff List doesn't see.

Gox

 Open an xref in another window in the same acad session. Also sets SDI (single document interface, which controls whether you can have one or many files open at once) to 0 if it is set to one. Offers the name of the first xref found as the default, so if there is only one you can just hit Enter.

Gr

 List the groups to which an entity belongs.

 Groups seem to be downplayed in the latest versions or AutoCAD, but they are quite useful, like blocks that can be turned on and off. The group commands are located in the Groups flyout under the Assist pulldown menu.

Grak.

 Explode all groups. I have come across drawings with as many as 45,000 groups (there can be empty groups and one entity can belong to several groups) which makes them very large and very slow to work on. Erasing or modifying an entity does the same thing to every entity in any group to which it belongs, so they can make life very difficult.

 Exploding groups does not in any way affect the entities they contain.

 Modified: Grak does not ask for confirmation before killing groups if it is run from a script.

 See also Gremp, which only destroys empty groups.

Grayat

 It seems to be fairly standard that entities in a drawing which may exist at some point in the future are coloured gray. If a block is properly made it can be recoloured, but this often doesn’t apply to its attributes. Grayat recolours all the attributes in selected blocks gray (colour 8).

 Grayat also contains Gray, which colours the attributes and the main entity gray, and Oc (Original Colour) which recolours both attributes and main entities bylayer. Of course if they weren’t originally coloured bylayer then you might want to use Blunt instead.
Gremp

 Destroy all empty groups. Typically programs which make groups tend to create several times as many empty ones as ones which contain something. And typically programs shouldn’t create groups.

Grl

 Select something on a layer, it (the layer) will be recoloured gray. If the entity was on 0 Grl will step up to the parent entity – if there is one - and try to colour its layer gray. Intended for changing layers in xrefs to use as backgrounds.

Ground

 Insert a ground symbol on the end of a line. You can also put one by itself, but wiring being the sort of integrated whole that it is this may not be all that useful.

Grpid

 Count and list all groups, and highlight anything which belongs to a group.

Gyc

 Centre selected entities in a box. Like Tea, but works with the majority of entity types and doesn’t move entities relative to each other. Good for putting client logos in boxes in the title block.

 Also contains Gy, which is less flashy but quicker.

Halo

 Every drawing has a title block, and these have attributes. (If your drawings don’t have proper title blocks then go and make one up before you read any further.)

 There are certain areas of the title block which are the same on every drawing in a job, and someone has to go through each drawing and update them. This often happens at the end of the job when there is a scramble to change wrong information, pick up ones which were missed, and update everything based on a change in title, LSD, or plant name.

 Halo reads a text file which tells is which text belongs in which fields, sees if it has a title block which it knows about, and if so updates the drawing. It runs each time you open a drawing, so once the information is in the file every drawing you open will have the correct common title text. You save on time and labour and get a drawing set with no idiotic mistakes in the titles..

 What if you don’t want to update the title blocks on a job? Then don’t make a text file and Halo won’t change anything.

 Halo requires some setup, which we can do for you, or you can wait for the next update which will run entirely from an external configuration file. Very highly recommended.

 Update: Largely obsoleted by Halon.

Halon

 The version of Halo which is run from an external file. The external file Jobdata.txt must be located in the directory with the drawing. Anything after a semicolon is a comment and is ignored.

 The first line is the word Block followed by a vertical bar and a block name:

Block | Some-TB ; Name of the Block to Update

Then each line until the next block name contains an attribute name and a new value:

Client | BobGas Inc. ; some other comment

Title1 | Sea of Mud Project ; Title Line 1

If you want to empty an attribute use ##, and #Name puts in the filename without path or extension.

Dwgno | #Name ; Cadd File Name

Floor | #Name ; Floor of Building

 Halon has a number of other replacement codes, which are detailed in the file header. It completely obsoletes Halo, being easy to set up and more powerful.

 Jod, Jodc, and Jode make prototype jobdata.txt files.

Hd

 Disassociate a hatch. Originally written so that hatches could be quickly disassociated and then relayered without changing everything they were attached to. You can also uncheck the associative hatch box in the selection modes area of the selection tab of the Options dialog box, which allows you to select a hatch without selecting its boundary entities but still updates it if they are repositioned or otherwise changed.

HL

 Hatch last. If you are doing demolition drawings and want to cloud and hatch stuff to be removed, run HL immediately after creating the cloud.

Horn

 After years of research a member of our crack algorithm team (the inimitable MI) has finally decoded the algorithm which Foghorn Leghorn uses to construct sentences. This program implements that work.

 The command Horn will change a selected string to the Foghorn arrangement, the more powerful Fog does the whole drawing including attribute prompts.

 Horn isn’t loaded by default since once it is loaded you can’t use the fog command which is part of the 3D rendering suite.

Hoss
 Imports all of the drawings in a directory into the current one and places them in a grid pattern specified by the user. Also it places the name beneath each one and optionally inserts the tag names into the attributes and marks the insertion points.

 Useful if you are expected to know which blocks you have and what they look like. Also popular with management, who can look at pages of blocks and make noises which seem to indicate that they approve and then put them in a binder labeled standards which will remain untouched until our civilization is excavated by archaeologists several thousand years from now.

Ht
 Text height changer. Select one or more entities, change them to a chosen height. Also works on fixed height text, and will ignore non-text entities so you can window an area and change only the text. (Revised: now allows picking an entity of the desired height.)
 Contains Htx which also does blocks.
 See also Wt which does the same thing with text width scale factors.

Htm

 Test for writing html code from Lisp. Extracts the name and insertion of every block in the drawing, writes a web page detailing this and opens it in a browser. (If you’re not using Firefox you’ll have to edit this.) More interesting than useful.

Htt

 Isometric heat trace maker. Draws isometric lines with heat trace symbols at intervals. Pick a point, hit Return to toggle isoplanes, or Esc to end and combine all the lines and symbols into a single polyline. Saves a lot of time on heat trace isos.

Hvb
 Horizontal Venetian Blind. Rearranges text so that it's all at the same level vertically, without moving it horizontally. (Yes, it should have been called Vvb, but the name was already taken. You can rename it if you really want.) Pick the text, specify a point, and choose whether you want to align it by the text insertion point or on the left end of the text line (or what would be the left end if it were horizontal.)

Idle
 Remove all rev clouds and blocks from a drawing. Can be used with Fang to de-cloud a whole set of drawings before the next issue.

Ido

 Dimensions isometric polylines made by il.
Igloo

 You can object snap to an entity in model space from in paper space, but not vice versa. Igloo lets you draw a line in paper space and then moves it into model space where you can snap onto it. Very useful for lining stuff up between the two spaces, although it might be better if this deficiency was corrected in the next release of Acad.

il

 Isometric line maker. This contains five programs:
 Ipl - draws isometric polylines without adding curved sections or symbols.

 Il - adds radii.

 The rest fillet line segments and add symbols indicating the connection type.

 Ifl - flanges.
 Iwl - welds.
 Isl - socket welds.
 All lines and cured sections are combined into a polyline, connection symbols remain separate.

 See Ido which makes isometric dimensions.
Inc & Ink

 Inc adds one to the first number found in a selected text string, attribute, or mtext entity. Ink adds one to every number in every attribute in each block and every text and mtext entity, which makes it less useful and quite a bit more likely to be catastrophic.

Inf
 Prints (to the screen) various useful information about the drawing, punctuation, wildlife, etc. Tries to tell you not what you want to know, but what you need to know, in contrast to Windows which tells you what you don’t need to know and Macs which won’t tell you anything.

Ins & Insu
 These are both insulation makers, for the standard representation of fibreglass.

 Ins takes a width and two endpoints and draws the insulation. The resulting entity is a single polyline which is the correct width but which overlaps the ends of the space indicated so as to avoid having to start in the middle of an arc. In other words you will probably have to do some trimming.

 Insu is essentially the same but it places a box around the required area and trims off anything which falls outside it. This usually results in a small polyline arc which is separated from the main entity, so this is joined back on with a straight segment.

Ishu

 This is another attempt to automate stamping drawings. It puts text down the right side of the drawing: “Issued for Bid.” This can be trivially edited in the file Ishu.lsp. Aside from that no setup is required, so Ishu makes certain assumptions about the drawing. Can be batched with Fang, but as with any automation it’s wise to test it beforehand.

Intbreak
 Break a line at two intersections. Used for clearing lines out of blocks which cross them. The ability to trim to entities within a block is wonderful, but small blocks often contain text which prevents one from hitting the line it is sitting on top of, Intbreak isn’t bothered by this at all. Aliased to IB.

Irg
 You are working on a 4.5 megabyte drawing on your XT. The entities displayed on the screen - specifically the arcs and circles - are a bit lumpy and you would like to reassure yourself that they are correctly drawn. Unfortunately you don't have two weeks to spare while the drawing regenerates. If you had a copy of Irg you could select just the entities you wanted to display correctly and cut the required time by half. Maybe more if you have a faster computer. Irg is short for Independent Regen, by the way.

 Later: there appears to be a bug in Acad2000 and subsequent releases which causes attdefs to display in the wrong place when you open a block directly, Irg will also fix these. Which, given that modern computers are quite a bit faster than they used to be, is about its only use.

 Later again: Irg prompts you to either select entities to regen or to do the whole screen, but if it is run from a batch it doesn’t ask.

J
 Making a group of lines into a polyline has always been slightly more involved than I like - pick a line, Do you wish to make it into a pline?, Join, select entities to join, etc.

 J asks for a selection set, sees if anything in it can be made into a polyline, and adds the rest if possible. This isn't a very complex routine, and unlike Pj it won't make the ends touch if they don't already, but it saves a lot of time and tedium.

 (J has been renamed from Join, because AutoCAD now has its own Join command, but since Join was aliased to J this shouldn’t be too much of a shock.)

Jod

 Select a block and make a prototype Jobdata.txt file in the current directory.
 Contains:

· Jod, use existing values.

· Jodc, use existing values and comment out all lines so you can select and uncomment the ones you need.
· Jode, use existing values, insert the ## symbol to empty them if they were empty in the example one.

Jumper
 Install a jumper on terminal blocks – pick two points, pick a horizontal location, Jumper draws the jumpers and breaks them around existing lines.

Junc

 Make a junction box. You probably have prototype drawings, but sometimes it is easier to just make one. Asks if you want analog or discrete and how many terminals, makes the terminal strip, puts in wiring and shields and default text, throws a box around the whole thing to represent the jb. Is quicker and more accurate than constructing jbs by hand, and at least gives the impression that you have some type of standards.

 Rewritten to offer more options. Now includes Jut, which makes just terminals.

Kibl
 Pick a block, Kibl will erase all insertions of that block in the drawing. Hit a return instead and Kibl will erase every block in the drawing. (It asks for confirmation first in case you didn't want to do anything that drastic.)

 Revamped: you can now either enter a block name or select an example block at the same prompt. The option to erase all blocks in the drawing is gone, because it was crazy. Use Sdel for that instead.

Kiln

 Blam converts attributes to text when it explodes a block. This is usually good, but blocks sometimes contain invisible attributes, so using Blam on them sometimes causes large numbers of text strings to magically appear. Kiln erases the contents of invisible attributes in selected blocks, so you can then Blam them with impunity.
Klab

 This must have been written for a purpose, but I can’t remember why. It was never used. This may seem odd, but I have several times written software to be used as either a threat or a bargaining tool. Anyone who has ever witnessed a professional demonstration of any program will have seen magical features which left everyone in awe and turned out to be of absolutely no use when it purchased.
 Klab erases all blocks contained in an internal list, which is easy to modify, so it could be run on startup or from a batch with Fang.

 See Beaker before using this.

Klat
 Turn off a selected attribute – select it and it is invisible. I was going to make it so that you could toggle them back on, but it proved difficult to select them once they were invisible. Vis will do this, though.

Klim

 Detach all images in the drawing. Drawings sometimes have images attached but not referenced, with Klim you can run a batch on the whole directory.

Klob

 One of the more tedious but necessary things one can do is trace cables across a plot plan and apply tags – this one goes here so it is in this stack but not this one, this one goes on… Show Klob two sets of cable tags and it erases any overlap from the second set, so you can use one main stack and remove them as they leave the main run.

 Revised: Klob now offers to either colour the overlap gray (the default) in which case they become the previous selection set, or to erase them.

Kt

 Kill the current layout tab. Perhaps this should be used with caution, for which reason it’s commented out in Acad2.lsp.

Kx

 Displays a dialog box with the name of each application having extended entity data in the drawing. Selecting an application name and then pressing the Kill button removes all xdata for that application from the drawing.

 See also Xmark.

Ladd
 Combines two lines of text. Pick the base line, pick the second, this will add the second one onto the end of the first; also it removes any excess spaces from between the two. Designed for those situations where Wm might be a bit tedious.

 See also T3 and 3T.

Layupp

 See Layup, under Bungee.

Lake

 Select a layer (something on it), then select other stuff, entities on that layer will be erased and everything else ignored.

Lamicoid

 Suck a .csv file made from the file Sample Lamicoids.xls in the Spreadsheets directory into a lamicoid schedule block (the B.O.M. Block under the Blocks pulldown.) Note that the Misc icon menu now has two types of lamicoid blocks: the standard triangular one and a new rectangular one for people who are bothered by the similarity between a lamicoid tag and a rev triangle.

Lash
 Release 12 added the capacity to display a polyline with a linetype other than continuous either with the pattern starting and ending at each vertex (which generally meant that the segments were too short to show the pattern) or displayed continuously over the whole thing. The display mode is set when the polyline is drawn and can be changed later on, but the method usually escapes me. Lash toggles a polyline between the two settings.

Latte

 Suppose that you had a friend who never took back his empties. Suppose that whenever you visited him you suddenly had just as many, plus the ones you already had. Suppose that if you visited anyone else they suddenly had all yours and all of theirs, but you still had just as many. And you could only take them back a few at a time. Pretty soon everyone would have lots of beer cans.

 Suppose that in the recent versions of AutoCAD every drawing had all the layer filters that anyone had made in it and all the ones from every block that had ever been inserted into it, and you had to go into each drawing and laboriously delete them in the layer manager window, and some drawings had over eight thousand of the things and the largest thing in the drawing was the layer filter dictionary and drawings started to slow down and sometimes crash, and the solution from Autodesk was a system variable which, if set correctly, would kill the things when you opened each drawing and fired up the layer dialog box.

 Actually the first scenario makes more sense. For the second one Latte will kill them and is set in Acad2.lsp to run when you open a drawing. If you don’t like this you can find the line containing the word Latte and erase it.

Layupp

 See Bungee.
Lcb
 Like Lch, moves entities to a layer indicated by selecting something on it, but this one changes the colour and linetype to bylayer. Note that if your entity is on the right layer but the wrong colour you can pick it and then use it again to indicate the destination layer.

Lch
 Select objects, pick an object on the desired layer, move the former to coincide in that respect with the latter.

Ld

 Load a lisp. Almost all of the lisp files included with Rocketcad are loaded automatically, but you may want to write your own or get some from other sources. The standard load procedure is (load “lispname”), but it is easier just to type Ld and then the lisp name.

 Most people prefer Ldr, but Ld is included because I use it. I would include a note on buying only software made by people who use what they write, but of course this is self-limiting – once software becomes profitable, the process that prompted its creation is usually either relegated to a secondary role or dropped. Which may be why software so often succumbs to featuritis and random changes: it’s not that they’re trying to force an upgrade, they’ve just lost sight of what they were trying to do in the first place.

Ldr
 The next evolutionary step past Ld - loads a lisp and then runs it. One would think that the ability to have one lisp run another would be very useful, but beyond this not a lot comes to mind. I spent some time writing a routine which allowed one to embed lisp in a block and then to run the routine by selecting it, but while this was fascinating the world did not beat a path to my door bearing boxes full of unwanted mice.

Lea

 Layer names come in a variety of cases – upper, lower, and mixed, usually not with the capitals where you would expect (i.e. at the beginning.) Larn was an attempt to bring some order to this – it goes through all the layers (except xref layers and 0, which can’t be renamed) and adjusts the capitalization. It has a nice dialog box and a variety of options.

 This was a bit too elaborate for many users, and a lot of people didn’t want to capitalize (for instance) just the consonants, so for those who just want initial capitals and the rest lowercase, there is Lea, which does just that. Lea can be run as a batch with Fang, and the file still contains Larn for those with more baroque tastes.

 Now includes Blc, which initial capitalizes block names.

 See also Diaper, which is more (perhaps unnecessarily) powerful.

Leda
 Associative leaders were a great idea, but impossible to set up exactly the way everyone wanted them, which led to some really awful drafting. (Or maybe there was awful drafting going on already …) Leda uses the associative leader entity but dead ends it and puts text on the end. You can still drag the leader and have the arrowhead realign itself, and you have a decent looking leader. Quick and easy to use, handles multiple text lines, doesn’t require any special setup.

Left
 Convert text to left justified text; specify a new insertion point or by default use the original one.

Lent

 Another attempt to make it easier to get information into a drawing. Make a .csv file from a spreadsheet or database, Lent will ask for a file name, let you select a line, and then drop it into a picked block, one field per attribute until it either runs out of fields or attributes. Saved a huge amount of time on the job it was written for, so it is probably worth keeping around for another use.

Lf

 Shapes are like leeches – a nuisance to find in your drawings, and seemingly impossible to get rid of. But you can.

 Shag locates loose shapes and tells you which linetypes and blocks contain shapes. Then you can use Lf to find the entities in the contaminated linetypes and either redefine or erase them. Lf offers a dialog box for you to select the linetype from and then highlights and places a marker on each matching entity. The entities become the Previous selection set so you don’t have to find and select each one to deal with them.

 Don’t forget that there may be layers using the shape linetypes.

 You may also have to wblock the drawing out to itself (see Bounce) to be finally rid of the shapes.

Life

 A small implementation of Conway’s Life. The simple instructions are written in the file header and I won’t duplicate them here. Includes several data files which you can import – Glider.lif, Glider2.lif, Glider5.lif, and Life.lif. This is the same type of programming which your retinas use to clean up images, so don’t dismiss it out of hand.

Lineup
 Make sure composite lines containing text are upright so that the text doesn’t display upside down. If the ten end of the line is to the right of the eleven end then the line is rotated 180(and the text is miraculously upright. Probably Autodesk will make this the default display mode in some future release.

Lix
 Sets the limits to the extents. Useful if you find the grid occupying only a postage stamp sized area of your screen, if your Zoom All produces mostly empty space, or if plotting to limits produces a handy wallet-sized picture.

 Piping people will foam at the mouth if they see this, because they like to leave lumps of excess piping out in space and then print to limits after setting them to match the extents of the title block. They are also very prone to the idea that the universe will cease to exist if Electrical doesn’t plot in the same way that piping does, and in fact if everything isn’t done their way. It is usually a good idea to humor them since they outnumber us, but try not to take their ideas too seriously.

Lld and Lldr
 Lisp loader, similar to Ld, but uses the file selection dialog. Most of the routines listed here are already loaded, but sometimes one needs to go looking. Lldr is the same thing but also runs the routine, like Ldr, and is included solely because people will otherwise say, “Hey, there’s one missing.”

Lms
 Move stuff to a layer, make that layer current.
Look
 Pick two opposite corners of a rectangle, Look will trim and erase everything trimmable or erasable out of it.

Lox
 Similar to Filo - writes entity data listings to a file, but this one only writes the sublists you request. This makes the resulting file a lot easier to decipher, since the screen isn't clogged with justification types and extrusion directions.

 If you don’t understand that then you probably don’t need it.

Lsc

 Change entity linetype scales. These very rarely need to be adjusted, and when they do it is usually to undo some abominable thing that you have found in a wounded drawing.

Lset
 Pick an object and thus set the current layer. Also tells you what layer you were on and what layer you are on. You could just pay attention to the status line, but your mind might be having coffee or you just might like commands that tell you what you have just done, as opposed to what you think you have just done.

LSL

 Select an entity, then select others. Once the command is finished any of the selected entities which were on the same layer as the first entity become the previous selection set.

 See also Ezlay and Lch.

Lt
 Change linetype by object selection. Select some entities, pick one of the desired linetype, the previous ones will be changed to match. The default linetype (continuous) is not always explicitly contained in the entity database, so Lt adds that entry to the entity data list if it can't find it, and then modifies it as required. All of the books claim that this is impossible, but it does work. Then again, maybe I imagined the whole thing.

Ltl

 Reload all linetypes in a drawing. If this doesn’t work you should check to see if you are using the linetype file which contains the linetypes you want. Typically this is Acad.lin, there is also Acadiso.lin which contains linetypes with the same names at different scales. There may be duplicate copies of Acad.lin on your machine, the one you want is in the Rocket directory.

Ltr
 Accepts a file name. If the file exists, writes the last line to the status line. It then writes all text typed in into the file, starting a new line with each Return. A Return with no input terminates the procedure, and the filename is saved as the default so that you can pick up where you left off. This might be useful for writing batch files or something, but mostly it was designed to allow me to write letters to my friends explaining what a tyrant my boss was for not letting me write letters to my friends, while appearing to be working in AutoCAD.

Lump
 Dumps everything on one or more layers onto another layer. Pick entities on layers to move, then something on the destination layer, and answer "Yes" to the request for confirmation. Very useful for cutting down the number of layers in a drawing. Also capable of wreaking a fair amount of havoc, so don't use this if you're accustomed to being protected from your own insanity.

 See also Ezlay and RL, which does the same thing but includes subentities.

Lwt and Ln
 Lwt allows you to select entities and modify their lineweights. Ln sets the lineweights to Bylayer. Giving entities lineweights independent of their colour will probably be indispensable when large colour printers become the standard for output, but sporadically applied and for monochrome printing they are merely an irritation.

Lx
 Pull an attribute out of a block as text – select the attribute and it will appear on your cursor as text, ready to place. Much quicker than making text up from scratch, and also allows you to save a line of text out of a block without using Blam and laboriously erasing everything you don’t need. Also leaves you with the vague impression that you’ve just done something impossible.

Mach

 Search and replace attributes, select them by picking each one or windowing several – allows you to treat attributes as though they were blocks. The attedit command (called from the command line with a leading dash: -attedit) can do a lot of amazing things, but the syntax is odd enough that it is worth building into little macros like this one.

Marmot
 Multi-attribute squash – originally made for use with monster shutdown key blocks. Pick several attributes, input a width scale factor, they will all be changed to that width scale. Saves a little time and a lot of irritation. MI, who complains nonstop about idiotic lisp names, contributed both the idea and the name.

Mash

 Similar to Mach, but does a straight replacement on selected attributes.

Mattress

 Matchlines: some clients require them and some don’t. If they are used then they should have text indicating where they are in space and which drawing they connect to. The text should be of a standard height and offset a standard distance from the line, which should be a polyline of a given thickness, linetype, and colour.

 This is all quite tedious to set up, so Mattress makes everything right if you pick the text and the line.

Melon

 It is desirable for anyone who lives in the modern world to be familiar with both the Imperial and Metric systems of measurement – those who say that one must replace the other for religious reasons are completely missing the point. (Metric nuts proceed to dance around with a dead carp on their heads wondering how Knots ever came to be metric and trying to remember whether Angstroms are in or out this week.)

 Suppose that you need a line on a drawing done in millimetres but the measurements are in inches? Melon takes a length in inches and a direction and draws the line in mm. This isn’t a perfect solution, and for complex objects it is better to draw the whole thing assuming that one unit is an inch and then scale everything up by 25.4. Generally one mixes both methods.

Mepall

 Search and replace for text, attributes, and text in blocks.

 See Repall.

Mex
 Mtext is one of those things which came really close to being a good idea, but whenever I have tried to use it I have become frustrated and exploded it. People who use programs based not on whether they work but on whether they really should often do everything in mtext, even single words. Unfortunately it is appallingly awful for paragraphs, which is really the only place where it should even be considered.

 Mex brutally explodes all of it – nothing looks different, but you can suddenly get things done.

Middle
 Convert text to middle justified text. Fairly self explanatory but if it really baffles you get an adult to take a look. See also Align, Left, Fit, and Right.

 Revised: If a <Return> is entered instead of a new centre point the text will be rejustified to middle but will not move at all.

 See also Muddle.

Min
 The original versions of Acad included the multiple insert block: like a regular block, but instead of just one you could have it display several rows and columns of the same thing. The attributes in a minserted block were disabled, and it couldn’t be exploded.

 Min allows you to change a normal block into a minserted block. This is interesting but useless, but if you give the block a number of columns or rows and no distance it will be minserted and thus can’t be exploded. Under R14 the Zero function would make it back into a normal block, but as of 2000 this no longer works: you have a block which can’t be exploded, albeit one with no attributes.

Miss

 A more interesting explode command. Try this once when nobody is watching.

Mm

 Make text into mtext. Only because someone asked for it. (Once.)

Mmi

 The mirror command should mirror the justification on text - is this not the most obvious thing in the world?

 Mmi does this, but only if you are mirroring the text right to left – top to bottom is ignored, the cutoff is if the mirror line angle is at an angle of more than 45(to the text angle. Currently handles only R, L, MR, and ML justifications – others are mirrored but not rejustified. (Technically it can deal with C and M, since these don’t change much when mirrored.)

Mold

 Mark every entity in the drawing with a tuft of mold. Keep a straight face and say that you don’t know what is happening, but that maybe you need a new computer. A redraw will make everything clean again.

Moo

 Load the menu file Auxelec.mnu as pulldown 16. You might want to edit the file first so that it has something useful in it. Also contains Omo, which unloads it.

Moss

 Suck stuff from model into paper space. This is something you should probably think about before doing.

 See also Igloo and Spam.

Moz

 3D stuff. Moz moves selected stuff along the Z axis to make a selected point touch another entity. Saves messing with .x, .y, and .z point filters. Select entities and a point, from which the x and y co-ordinates are taken and another point for the z. Mox and Moy do the other two axes.
Mp

 Match properties (layer, colour, and linetype) with those of a selected entity. The built in matchprop command gives you more control, but this is quicker and generally safer because you don’t run the risk of changing properties which you had forgotten were set.

Muddle

 Select a number of text entities, change them all to middle justification. Useful for cleaning up large amounts of text before exporting it with Snort.

Mull

 It used to be common to do a cross section of a trench or cable tray showing the order in which the cables were to be laid. Surprisingly these were not always treated with the respect that the designer would have liked. A more modern approach is to label the cables by type: main feeders in numerical order, followed by power, then control, and so forth. This makes life easier for the electricians, doesn’t waste drafting time drawing stuff that isn’t ever going to be built that way, and makes it much easier to keep track of the cables since they are always in the same order.

 Mull does this automatically: pick a stack of tags and they will be reordered vertically.

Mullet

 The same as Mull, but reorders text instead of block values, some older drawings having text instead of blocks for cable tags. Mullet has a better warning for tags with duplicate strings.

Mva
 Caution: this program does not work correctly with R14 and up: the value of the Extmin system variable is typically off by 0.01 units in the last few releases. Autocad seems to have given up on precision for certain types of operations, which seems like a rather severe tactical error.

 Mva moves the lower left point of the drawing to 0,0. If you have macros to insert a block or edit text at a specific point, this might come in handy. Like many of these, it will only be of use to those who share their drawings with the careless or unbalanced.

 Later note: schematics and drawings of things which don’t have a definite geographic location should usually be at 0,0. Ones which are located relative to some part of physical reality should be located at the appropriate point in space so that things can be inserted using their real coordinates and come out in the right place. This makes drawing faster and more accurate and makes checking lengths and sizes more reliable. Also dumping several drawings into one file to check for alignment becomes trivial, and copying things from one drawing to another is much less stressful.

 Also includes Mvo, which moves an ss back to 0,0, the base point being the insertion of the first entity selected.

N

 List entity information in a condensed form on the command line, saves time and doesn’t require flipping to the text screen. Also tells you stuff that List doesn’t.

Nail

 Make a set of notes. Pick a point, Nail puts in the Notes: header and then starts a new line below it, numbered 1.

It adds a new line after each Return, if Return is pressed again then it starts a new note with the next number in sequence, if nothing is entered (i.e. a third Return) then it erases the new note number and exits.

 You can add a new line to an existing note by either clicking on the last number (if the last note is only one line) or on the last line of text, in which case you will be asked what the note number is.

 Revised: Nail now uses 3mm text for the word NOTES: and 2.5mm for the remaining text. If you prefer the previous (larger) text sizes then you can overwrite Nail.lsp with the original file which is saved as Nail 01.lsp.

Nepo

 A strange point connector. I have no idea what this was for or what it is doing in here. Draw some points, run Nepo, admire, undo.

Next & Nxt

 Each time you enter Next you will go to the next drawing in the directory, so that you can make changes (i.e. changes which require judgment, so that Fang can’t be set up to do them) to each drawing without the bother of typing open, finding the name, etc. etc.

 Next turns on Sdi mode (setvar SDI to 1) so that after editing a hundred drawings they won’t all still be open, and thus Next will only work if you only have one drawing open. When you are finished you can set it back to 0 if you want to be able to open several drawings at once, just type SDI, then 0.

 Nxt is exactly the same as Next except that Next saves the drawing before going to the next one, and Nxt does not. Both programs read and write the same drawing name file, so you can use both in the same editing session. Each one prints, before opening the next drawing, the number of drawings remaining in the drawing name file Names.nxt, so that you can tell how many drawings are left to do. You can edit the file if you want to reorder the drawings or remove some.

Nn
 List subentity information in a dialog box. Mainly intended for attributes and other block subentities – i.e. when you need to know an attribute name without exploding the block.

 See Sun, which returns a complete subentity data list but is more difficult to interpret.

Noprox

 Proxy entities are a blight. Obviously if people can make up their own entity types special programming may be required to edit some of their properties. It’s hard to imagine what logic would say that the user shouldn’t be able to erase them.

 Dxfout your drawing, run Noprox and show it the dxf file. Noprox will make a copy of the file without proxy entities, which you can open in Autocad and save as the original drawing. This is clunky but effective.

 Note that if you can’t bind an xref it probably has proxy entities in it, and they may remain invisible no matter what you do. It appears that you can have an empty proxy just as you can create an empty block definition.
Noth
 Remove the path from all xrefs in the current drawing. A recent project involved fixing hundreds of drawings containing xrefs pathed to nonexistent locations, and Noth was very handy.
Np
 Setup and plot. Np has its own section in the main area of this manual.
Nuk

 This hasn’t been as generally useful as one might expect. Nuk overrides the speed control on the motors in any hard drives in the system, causing them to accelerate the platters to an arbitrarily high velocity. Given that the surface of a drive platter is microscopically smooth and that they occupy a very confined space the wind resistance is negligible and the rim speed soon becomes relativistic. The high surface polish and physical isolation prevent the occurrence of microscopic cracks which would ordinarily lead to structural failure, and the drive accumulates a huge amount of rotational energy.

 When the system attempts to access the disk the heads are moved toward the surface of the platter; as they cross the boundary between the stationary atmosphere and the moving layer of air close to the platter surface they are sucked onto the platter surface, causing enough damage to destroy the structural integrity of the rotating mass which disintegrates and impacts the inside of the drive casing. The release of kinetic energy transforms the entire stucture into plasma with a temperature of several hundred thousand degrees. Given a forty-five minute wind-up time a release of energy on the order of one-half to three-quarters of a kiloton can be expected.

 Caution: this routine is intended for use by experienced operators. You may wish to disable screensavers and incoming mail notification before using it.

Nux

 Swap an xref for another. Can be batched, requires editing.

Nt
 Incremented numbers with text. I have never used this, or even seen a vague theoretical need for it, but my old buddy MI felt that it would be better for me to spend several hours writing and debugging it than for him to spend several minutes working without it. It's interesting to watch, though.

Numf
 Sometimes a program suggests itself in the absence of a use - for instance One, which can convert a number (i.e. 111) to the English equivalent (one hundred and eleven).

 Sometimes a program suggests an equally useless (if more productive) program using itself as a base. Specifically, it occurred to me that I could modify One.lsp to convert a number of numbers to the English format and then to write the results to a file.

 Numf takes a starting and a final number and writes them and each one in between to a text file. It may appear that this is a pointless achievement - certainly it did to my coworkers. However given a reasonably fast computer, four unattended hours and a script file (num.scr, included) I was able to write the numbers from one to one million to four text files totaling nearly 65 megabytes. (Why four? Because, amazingly, they each Zip down to less than 1.2 megabytes and will fit on a floppy.) So: amaze your friends and relatives, prove that counting really works the way they told you in school, print it out and pretend it's a science project.

 Update note: a more powerful computer can write 1 – 10,000,000 in about fifteen minutes, or up to two hundred million in a couple of days. It is advisable to do this in text files as ten million numbers occupies between seven hundred megabytes and one gigabyte, depending on where they are in the series; no operating system with which I am familiar can deal with a file larger than 2.5 gigabytes.

 A CD will hold up to two hundred million, zipped. Please stay tuned for further updates.

Nx

 Save and go to the next file in the directory. Very useful.
 Also contains Xn, which goes backwards.

 See Next.

Nxlay

 Similar to Ezlay, but instead of displaying each layer it merely freezes all of them except for the one being displayed, freezing the current one and thawing the next each time it is called. Brutal and cantankerous but sometimes very useful, try Ezlay before you resort to this.

Obl

 Select a random lot of stuff containing some blocks, any blocks which it contains will be used as examples and all copies of each one in the drawing will be erased. Generally this is only useful if you have a determinedly minimalist approach to drawings, but there are times when the number of extraneous blocks starts to give a drawing hardening of the arteries.

Ofc
 2D sphere maker, for those times when you want your drawings to look like something from the last century. Make that the one before the last one. I did once use this for something productive, but it is included strictly because it goes well with Cyl.

Pac

 Another one which wasn’t supposed to be of lasting use. Select a tag of the form *-*, Pac splits it at the dash, then asks for two further text or attribute entities and puts one of the resulting strings into each.

 Also contains Cap which combines two strings with a dash and puts them into another entity, and Jef which extracts a text string from an entity and puts it into other entities with sequential “-1”, “-2, “-3” etc. appended.
Pang
 Screen shaker. Originally part of another program, but it seemed to need to be on its own.

Panic

 Electrical distribution panel (a.k.a. Lighting Panel) maker.

 This is found under the Electrical pulldown, so you don’t have to remember the name. It makes single and three phase panels in the standard sizes, if you prefer you can specify your own size, although you may not be able to find anyone willing to sell you a two circuit panel. (Pause here while about six people say “I once worked on a project where we had one of those…”) Odd numbers of circuits are not allowed, but since the resulting entity is almost entirely composed of loose lines and text you can edit it to your heart’s content.

 Updated: Panic now puts in separate wattage totals for each phase. The original file is saved as Panic 1.lsp if you prefer it.

Parabola

 Draws a parabola, and adds light rays being reflected onto the focal point. Mostly useful for explaining parabolas to people, a matter which comes up in engineering offices more frequently than you might think, so here it is. A good starting Y scale factor is 0.01, not the 10 offered as the default.
Pasta

 Drawing setup routine. I’m not usually in favour of these since it takes so little time to set up a drawing, but people feel comforted to have them.

 See Cala.

Pc
 Draw a circle in paper space over one in model space. Good for drawing hatching in PS when the drawing is in MS, and other things, none of which come readily to mind.

Pcl

 Close a polyline. Surprisingly useful.

 See also BL.

Penguin
 Penguin breaks lines, polylines, and lwpolylines where they intersect, but will not put a break at one end of a line, since if it did it would cut a polyline at each vertex.

 See also Xing and Zing, which do the same thing but only to lines…actually I am not sure why they are still included, but they are, so there must be a reason. (Zing allows you to choose whether to cut the horizontal line or the vertical one.)

Pfp
 My boss (actually the King) showed me a page he had copied out of the Lisp manual with the special commands for the ADE/Lisp text editor (the name escapes me). Feeling that they were a trifle awkward in the absence of a computer with foot pedals I asked why he didn't use Ed which allows the use of a real text editor. He replied that Ed can only handle one line of text at a time. (For which reason it isn’t included any more.)

 An unusual attack of professional pride forced me to put aside work on the solar powered tanning bed and write PFP (Paragraph-File-Paragraph) which handles multiple lines of text, creates and erases lines as needed, and uses a real text editor.

 This is handy if you want to create a lot of text using features only found in an editor; Pfp creates extra lines of text if they are needed.

Pga
 Draw a polyline loop around one or more lines and insert cable tag blocks. A variant of Tga.
Phd

 Change any text which uses a style based on a big font style to an ordinary style.

 Why are drawings made with fonts that are not available outside the company which created them? The assumption seems to be that although drawings are done for a client and then given to the client, the client will never open them or allow anyone else to work on them. Big font styles are pretty much the same idea, but the one which prompted this program didn’t come from the company who created the font, and none of the text used the big font features.

 If you want a font which you can freely distribute with features you can actually use, see Rocket.shx.

Phdel

 Delete all frozen layers. Very useful for cleaning up mechanical drawings, deleting extraneous stuff after binding an Xref, etc.

Pid

 Select text entities (or blocks) and add a prefix and/or suffix. Don’t select anything and you will be asked for a new prefix and suffix, an empty space kills an existing one. Originally written to fix errant PIDs, thus the name.

 See also Eno.

Pivot
 Pick text, an attdef, an attribute, or text within a block, and Pivot rotates it into the next isoplane. If it isn’t isometric it will be made so. Pit does the same thing, but only with text.

Piranha

 This is on the File pulldown under Vastly More Drawings. Piranha keeps track of the last five hundred drawings

you have opened and displays them in a dialog box, clicking on a name opens the drawing.

 Files are added to the top of the dialog box, so that the most recently opened ones come first. If a file is opened which is already in the dialog it is moved to the top.

 Piranha is thus useful because it allows you to return to a recently opened drawing without diving through endless layers of sedimentary directories, hoping to find the drawing before it fossilizes under the weight of your byzantine directory structure. It is also useful for getting a general idea of what you worked on and in what order.

 The file names are stored in the main Acad directory in the file Lastfile. This can be edited with a text editor, and comments can be added, prefaced with a semicolon. One could theoretically add a list of drawing names belonging to a given project to the file so that those working on the project could easily access them.
Pj

 Join two noncontinuous polylines by drawing a connecting segment. Usually it is better to move the end of one to the end of the other, for which grips can be very handy, but sometimes fixing minute misalignment errors is too time-consuming.

Pkill

 Erase all points in the drawing. See also Beaker, which used to do this.

Play
 Files sometimes have layers that can't be purged. Usually there is either an entity you have missed on the layer (possibly an empty text string) or a block on a different layer with a subentity on the stuck one.

 Play checks the layer for empty strings and other entities, marks them, and offers to erase them. Then it searches the block table for blocks with subentities on the layer in question, and prints a list of their names. At this point you can insert a copy of the block, explode it, move the problem entity to another layer and reblock the entities, redefining the block. (Chat will make this process relatively painless.) See also Dn.

 Revised: there are a number of lisp routines which can change the layer on which an attribute is placed without affecting the block itself, so that the attribute is on a layer other than that specified in the block tables. Play now checks for this condition and marks the edited blocks.

Pof

 Part Of – designers often want the text “Part Of” placed above a cable tag, just in case anyone thought that the only cables you can get contain a single conductor. Pof saves time and positions the text consistently. Also you can change it if you need it to say something even more obvious.
Pollar/Pol/Polo

 The latest Acad has a cloud command which includes this feature, so before people start complaining, here it is.

 Pollar steps through a polyline and gives the beginning of each segment a specified width and the end a zero width, so they look as though they were done with india ink and a brush. Pollar is useful because it allows you two make a two segment curved pline into a curved arrow with a matching head.

 Pol does the same thing but repeats so that the line slowly grows to the desired width. It’s completely useless.

 Polo sets the start and end widths back to zero.

 These only work with old style polylines, not lwpolylines, an omission which will be fixed if anyone ever complains, which is very unlikely.

Poxx

 One of the major ways of killing time - at least at the schools I attended - was doodling. The form that leaps to mind was a square which was repeatedly divided by drawing a line from one corner to a point about a quarter of the way along the opposite side, and continuing toward the centre until you wore a hole in the paper or the class was over.

 This routine does the same thing. It probably won't amuse you more than two or three times, but it's worth keeping around so that when you start reminiscing about your school days you can remind yourself how stupefyingly boring they really were.

 Revised: Poxx now allows you to specify how many divisions you want per side, and draws the pattern in either temporary lines which are erased by a Redraw, or normal ones which can be plotted.

Prop
 Rescale all selected blocks to dimscale. Contained in the file Scabl.lsp, along with P1, which rescales them to 1.
Pulp

See Blup.

Punk

 Insert multiple blocks a user specified distance apart, put in incremented tag numbers, break the lines they hit, etc.

Called from the second Terminal icon menu.

Pur

 Pick two entities, Pur will decide what they are and modify them accordingly. Note that the selection order is significant - as a general rule the first thing picked will be the one changed or moved.

· Line and Circle: move the end of the line closest to the pick point so that the line is perpendicular to the circle.

· Circle and Line - move the circle to the end of the line.

· Block and Circle - Make the line perpendicular to the largest circle in the block.

· Circle and Block - move the block to the end of a line.

· Line and Arrowhead - move the closest end of the line to touch the point of the arrowhead, rotate the arrowhead to match the line angle. The arrowhead must be a solid - arrowhead blocks are ignored since it's impossible to guess that they are supposed to be arrowheads, where the base point is, etc, etc.

· Arrowhead and Line - Move the arrowhead to the closest end of the line and rotate it to match the line angle.

· Circle and Circle - move the first circle along a line between its centre and that of the second circle until they touch.

· Block and Block - move the first block insertion along a line between the centre of its largest circle and the centre of the largest circle in the second block until they touch.

· Text and Circle – move all selected text as a set to the centre of the circle. Most entities are selected with a single pick and then Pur asks for the second of the required pair, if the first one is text then Pur keeps asking for entities until you hit Return, then it asks for the second entity.

· Text and polyline – if the pline is a rectangle then the text is centred in it when it is selected, if not then Pur asks for a second corner and centres the text in the same way that Tea does.

 Further refinements are in the works, most notably dealing with the arrowhead solid vs. block problem.

 Revised: Pur can now deduce which corner of a solid is the end of the arrowhead even if it is a nonstandard one.

See also Crab, which can realign two circles or blocks and a line.

Pw

 Widthed polylines are often used for borders, matchlines, etc. which need a little more emphasis. This isn't always consistently done even where standards so dictate, probably because it uses up time, thought, and whatever is the opposite of minor irritation.

 Pw gives a polyline a width (by default equal to half of Dimscale - the most popular width), if it is used on a line, an arc, or a circle it first makes it into a polyline. It can do more than one entity at a time.

Px

 A lot of P&IDs use blocks which don’t contain attributes, perhaps because they are often so crowded that there can be no standard location for the text. Unfortunately text is often carelessly placed and improperly justified. Px moves text to the right location and correctly justifies it, depending on whether it is above or below and to the right or left of the block. Select a mixture of text and a block and it will do the rest.
 Px was made so that electrical people can quickly clean up P&IDs, and may need to be revised to conform to a generally accepted aesthetic standard. If there is such a thing.
Qeb
 Pick a block, Qeb wblocks it out to disk unless it is already present in the current directory in which case it asks if you want to overwrite the existing one. Not much simpler than answering the wblock prompts, but it saves typing the name twice and is much easier than explaining to ones coworkers for the thousandth time how they have managed to create a self-referencing block.

QQQ

 Save. Included solely to force a save during a batch where AutoCAD may decide that no save is necessary.

Radar

 Search upwards for a file, also checking subdirectories of parent directories. For use as a subroutine.
Rain

 Makes a nice raindrops falling into water display for a few minutes.

Raja

 One sometimes finds that intelligent people in search of a way to save time have placed a block of text on top of a block rather than putting the values into the attributes.

 Raj sucks text from on top of a block into the nearest underlying attribute, remedying this idiotic situation without selecting each text entity and attribute. Note that nearest attribute is found by measuring the distance from the insertion point of the attribute to that of the text, so if the attribute is left justified and the text is right then Raj may decide that another attribute is closer, so you should keep an eye on the results. With this caveat (and pending a better algorithm) Raj is proving to be very handy. But maybe that’s only because work is becoming saturated with idiots.

 See also Gostak/Go, and Raji, which requires editing but can be run from a batch.

Ral/Lar

 When a drawing is full of text which is placed sideways so as to have space for more lines it would be nice to be able to quickly rotate the whole drawing 90(, and then reverse the procedure after editing it. Although the effort involved in so doing seems trivial, there are lots of trivial things (learning to juggle burning sofas, training penguins to deliver mail, getting sense out of a committee) which never quite seem to get done.

 After thinking about this for about fifteen years I wrote Ral, which rotates the whole drawing clockwise ninety degrees around 0,0 and Lar which does the same thing counterclockwise. This is intended for use in model space, because rotating a viewport doesn’t rotate the contents.

Rash

 It is pretty obvious that rev triangles should match the current rev and be deleted when the next rev is added – one shouldn’t rev up a rev triangle. Unfortunately it isn’t that uncommon to be asked to update them to match a new rev. You can at this point demonstrate your vast experience by pointing out in bored tones that this isn’t typically done, and then run Rash which will update all the rev triangles to match the rev in the title block. Rash can be run from batch with Fang.
 Caution: Rash has to know about the title block to find the rev, so you should test this before using it on a lot of drawings. If it doesn’t the file will need to be modified.
 Also contains Rt – insert a rev triangle and offer the current rev as the default value.

Rat
 The attdef command always seemed a bit convoluted to me - why couldn't one just make an existing text entity into an attribute? Now you can.

 Rat asks you (just to make the routine complete) if you want to change any of the flag settings (Invisible, Constant, Verify, Preset) and lets you do so if you wish. In case you have already changed them it tells you the current settings: ivcp is all off, IVCP is all on, etc. Note that they are all reset to Off at the start of each drawing session. Then it prompts for the Tag name, Prompt, and Default value, allowing you to use the original text string for any or all of them. (A space is interpreted as a lack of desire to input any value, a <Return> uses the default.) You can go from text to attribute in a pick and four returns if you're in a hurry.

 If you want to explode a block and make the attributes into text see Blam.

Ratt

 A more modern and practical version of Rat – select text, it will all be made into attdefs. Then you can edit them with Ddx and fine tune things. Allows you to make a line of text and some geometry into a block very quickly.

Reco

 Large tables – cable schedules, shutdown keys, etc. – can be very difficult to read when the grid lines are all the same weight. Reco lets you pick a group of lines and recolours them gray, skipping the first and every 5th one (you can use your own number if you don’t like 5). Makes things much easier to read (which is supposed to be why we do this) and is very quick.

Refa

 Update a set of blocks from a Csv file - Refa reads the file Reference.csv into any blocks whose names begin with “ref”. Refa searches for Reference.csv (a comma delimited file which can be handwritten or saved as from a spreadsheet or database) for a line the first field of which matches the first attribute value in the block. (The attribute can be invisible.) If a matching line is available the rest of the line is read in order into the successive attributes until there are no more fields (in which case remaining attributes are emptied) or no more attributes.

 If Reference.csv isn’t present in the directory with the drawing then Refa climbs the directory tree until either a copy is found or it reaches the root of the drive. If the file isn’t available or there are no Ref* blocks then nothing happens.

 Refa is commented out in Acad2.lsp, removing the semicolon from in front of its line will activate it.
Rel

 Pur allows you to deal with leaders which aren’t real leaders, but recently there has been a demand for a more permanent solution. Rel makes selected entities into a leader and puts it on the appropriate layer. It doesn’t correct the geometry or reposition text, because people will only put up with so much.

Repall

 Text search & replace for batch files. Can do more than one search at a time, but requires the user to edit the code, which is a pretty minor thing to do, and there are clear instructions on what to edit and how to do it in the file. This might be simplified in a future release if enough people bitch and someone suggests a good alternative.

 Very popular among those who know it, and capable of saving huge amounts of time and trouble.

 See Fang, which makes and runs batches, Chall, which doesn’t, and Mepall, which is the same as Repall but which also changes text and mtext contained in blocks.
Repo

 Reinsert every block in a drawing (if it can be found as a file), bringing their definitions up to date. This should be used with caution since if a block has been redefined in a drawing there is probably a good reason and changing it back to the original may cause problems.

 See also Ltl, which does the same thing for linetypes.

Repth

 Convert xrefs from absolute to relative paths. The xrefs must be referenced and the files must exist and be on the current drive.
Reset

 The most common single phone call I get about AutoCAD is, “My dialog boxes stopped working!” Usually this is followed by, “And it’s your fault.”

 There are a small number of system variables which cause most problems, Reset changes them to the commonly used values. The original intent was to reset almost all of them, but it is difficult to predict the future or to read the minds of people you have never met, so I cut it back to the essential sixteen and indulged myself by turning snap on.
Right

 Convert text to right justified text. The default insertion point is the original or you can pick a new one - it's one of those decisions which the program can't make for you.

RL

 Relayer with subentities: enter an origin layer name and a destination layer name, Rl moves everything from the former to the latter, including block subentities.

 See also Lump.

Rocket

 Reformat text so that fractions will display properly when used with the font Rocket.shx.

Rx

 The standard views in 3d space are usually all that one requires, but sometimes you need to be more precise.
 Rx rotates the ucs 5º around the X axis. Xrr rotates 5º (1/72nd of a full revolution) in the other direction, and Ry, Yr, Rz, and Zr do the same thing round the other axes. (Xrr isn’t the opposite of Rx, since Xr is xref.) The increment was originally 11.25º, or 1/32 of a rotation, but public scorn can have an amazing effect even on the most stubborn programmer.
Sarn

 Search and replace for block names. Also contains the utilities Sloot, which prints the block table headers, and Sara, which changes all block names to initial capitals. None of this is of any use, it was a byproduct of writing Bsarn, which is a batch block search and replace renamer, and which is useful if you have screwed up while trying to make a new standard block and didn’t notice until it had been inserted in several dozen drawings.

 See Bsarn.

Scabl

 Rescale all of one block type, or all blocks in the drawing. The latter option might be a little bit dangerous.

Also contains Prop, which rescales all selected blocks to dimscale, and P1, which rescales them to 1.

Scaler

 Archaic, but still in demand. Take an unscaled drawing, input a scale factor, scales the drawing up and updates the required system variables.

 See also Descale, which reverses the process.

Sch
 Restyle text: pick the text, select the style you want from the dialog box.

 A drawing begins to look badly designed if it has more than two text heights or styles, unless one is used for the company name, Sch helps retroactively restrain other people’s artistic impulses. Very useful.

Schlock

 Warns if any layers are off, frozen, or locked. Runs when a drawing is opened so that you know in advance what you are dealing with.

Scream

 A variation on Skull. (That information may be of limited interest since Skull is no longer included, having been rendered weird by the passage of time.)

 Pick a number of blocks, Scream replaces all of the attributes in one with the tags so that you can select them even if they are empty in all of the selected blocks. Select one of these (or an unmodified attribute in any block) to indicate which attribute you want to edit, Scream then restores the old values and asks for a text string which is then used to replace the picked attribute in each block.

 In other words this allows you to replace a common attribute in several blocks with a single value. Much more useful than this description might cause one to believe.

Scrub

 Search and replace for blocks: pick the blocks, indicate which attribute to search using the same method as in Scream, or search all of them, input the old and new strings, the rest will happen without you.

Sdel

 A departure from tradition: a program written for my own use. This routine lets you select items using the standard procedure and then prompts for a type of entity - Line, Circle, Insert (Block), Text, etc., and erases from the selection set all objects of that type. If you want it can also delete every entity of a given type from the entire drawing. The erased objects can be returned with Oops, at which point they become the Previous selection set.

 Not the type of thing one uses every day, but (like dynamite) likely to come in handy if you know it's there.

Sec

 Section arrow and tag maker.

Sev/Ves

 Sev makes a list of every known system variable and its current value. Ves checks the current state against the list and shows the changes. If a command changes things in a way you don’t like, or you want to know what a dialog box really did, you can run sev, make the changes, and then use Ves to see what really happened. (Ves ignores a few time and date and prompt settings because they are going to change no matter what you do.)

Shag

 Shapes were a good idea that didn’t catch on, probably because they were more difficult to make than blocks and required that another file be distributed with the drawing. They still exist in some drawings, and the shape files still aren’t distributed, so one gets annoying error messages about missing files.

 They are also almost impossible to get rid of, because they can be incorporated into a drawing in a number ways:

· As loose entities.

· As part of a block.

· As part of a linetype definition.

 Also if the file isn’t available they are invisible.

 Shag can locate loose ones and you can then use Erase Previous to eradicate them. It also tells you about shapes in blocks and linetypes so that you can purge or redefine them.

 See also Lf which can identify entities in a particular linetype.

Shark

 Kill any circles, arcs, lines, and polylines under a certain size.

Shield

 Inserts a shield block, cut or grounded and two or three wire depending on the proximity of terminal blocks and wires.

Shutdown
 Import an excel file into a shutdown key drawing. Requires some setup for which you will have to contact us. Saves an immense amount of time, minimizes the possibility of transcription errors, and produces a better finished drawing.

Sklork
 Vertically alphabetize blocks - select a number of insertions of one block, Sklork puts their attributes in alphabetical order vertically. Alphabetization is done based on the value of the first attribute, if there are others then they are carried along with the first one. Note that this moves attribute values between blocks, it doesn’t move the blocks themselves.
 See also Abcat.

Snake

 Put things on snap: move the insertion point of entities to the nearest snap point, and where appropriate alter their dimensions to make them fit. Both ends of a line are put on snap, as are both endpoints of fitted or aligned text and all vertices of a polyline; the centre of a circle is snapped and the radius is altered to the nearest multiple of the current snap, all four corners of a solid or trace are put on snap. Arcs, point entities, block insertions and centre, middle, right and left justified text entities are moved unaltered to the nearest snap point. Dimensions are ignored, being a special case, the routine Cobra is a modified Snake which will put them (and everything Snake does) on snap.

 Snake is very powerful, and is best used with a degree of caution, especially on things which are very badly drawn.

 Updated: Snake now puts arcs on snap. (Thanks for the suggestion, Steve. Even if your mother can’t remember what she called you.)

Snat
 Toggles snap between Dimscale and 2.5 x Dimscale, and turns snap on if it is off. F12 runs this.

Snort
 Export loose text into a csv by location. Or, in more detail: Snort is the latest text to file extractor. It writes an array of text entities to a comma delimited file in the same arrangement as in the drawing, and tries to deduce where columns are so that if there is no text in a column in a given row then a blank can be placed in the text file. The resulting file can be imported by any decent spreadsheet program.

Caveats:

1. Snort only works with text, so if you are trying to export attribute values you must either try Bullet or use Blam to explode them. Mtext must be exploded first.

2. If the text is so badly aligned that you can’t figure out where the columns are then Snort may also become confused. You can realign them with Vbc, which will also help if half of the text in a given column is left justified and the rest is centred.

3. Sometimes what looks like columns of text is lines with lots of spaces. Strafe can fix these.

4. Sometimes what looks like text is loose attdefs. Cat can fix these.

5. The time Snort takes to sort out the rows and columns rises with the square of the number of entities being exported, so if you are doing several thousand entities it may be best to either do them in strips and manually cut the files together or let it run over lunch.

Sort
 The predecessor to Snort – writes out arrays of text to comma delimited files, but doesn’t care if there is no entry in a column. Included because although Snort seems to render it obsolete it still occasionally gets used.

Spam

 Suck selected entities from paper space into model space. This can be used when some misguided person has put a schematic in model space and the title block in paper space, usually because paper space is more scientific and needs to be used as much as possible.

 Which brings up the question of whether abilities should be used because they exist or because they make sense in the current situation. As a rule of thumb there are a few things that it is a good idea to do just because you can: launching rockets, setting off explosives, and flying, if you have made friends with Superman and he has taught you how. Most other things should be held in reserve until you need them.

 Especially, in case you have missed the point here, paper space.

 See also Moss.

Span

 Pan a point in model space to line up with one in paper space.

Spare

 Converts a selected text entity to “SPARE”. Should save three minutes every four years.

 Revised: If the text string contains the word Spare and a number then the number is incremented with each successive pick of text after that. Spare alone is converted to Spare 1, and anything else is converted to Spare.

 See Txtt which this is part of and which does many other things.

Spi

 Temporary graphics (you can’t plot or save them) – a spiral of stars.

Spk

 Spk removes all leading and trailing spaces (which occur much more frequently than common sense would indicate that they should) from selected text and attribute values in blocks.

 Included Spak which does the same and also collapses any occurrences of more than one space within the string into just one, and Spc which removes all spaces.

 Both routines put a temporary marker (the more radial lines, the more spaces were removed) at the insertion of any text entity or attribute which they change.

Splurge

 The purge command now comes with a dialog box so that you can set everything up neatly, choose from numerous options, and then purge everything exactly as you wanted. All splurge does is purge everything it can, which is what you want 99.999% of the time.

Span

 Pan a point in model space by selecting two points in paper space. Note that this won’t work if the viewport is locked. Also that the last active viewport is the one which will pan.

Spray

 There have been a number of routines which could draw text in an arc or a circle. Spray allows one to apply it to a line, arc, circle, or any polyline, and to type it directly or read it in from a text entity or a text file. You can do some amazing things with Spray, and unless you are heavily into architectural detailing almost all of them are completely useless. I use it quite a lot when working on projects of a more decorative and less strictly work-related nature.

Spyr

 A fascinating routine which came into being by accident while I was writing a plant maker.

 Spyr prompts for a start point, segment length, start angle, angle increment, length multiplier, and number of segments. Then it draws lines, incrementing the angle and length each time. The result is one of a variety of patterns which are much more interesting to see than to read about. The increments (which are the heart of the matter) are used as defaults the next time around in case you want to do the same thing again or try some close variation.

 I recently occupied a few idle minutes by making a number of spirals with Spyr, making slides of them (with the Mslide command, in case you can't be bothered to look it up), and writing a script file to display the slides in a repeating loop to the amazement of my colleagues, none of whom had ever read the manual.

 The general format of the script file, in case you are interested, is:

Vslide Slidename

Delay 1000

Vslide AnotherSlidename

Delay 1000

Rscript

 (The delays are optional.)

Sq

 Test program for the graphic markers used with Nafi.
Squab

 Rewidth attributes in a variety of blocks so that they fit properly. Squab finds the blocks on its own and adjusts the widths, you just tell it to run.

 Later: Squab now understands wild cards in attribute names (you can edit them yourself, it’s explained in the file) and the bug when dealing with mirrored blocks has been fixed.

Squid

 Adjust the width scale factor of attributes in shutdown key drawings to fit in their cells. Run after a shutdown key has been imported with Shutdown.

Squish

 Squashes text so that it is not over a certain physical length. Similar to Vb, but doesn’t generate fitted text so the entities can be further edited without problems and if the number of letters becomes less (due to either bit rot or editing) the text doesn’t become ridiculously wide.

Ssca

 Rescale all selected blocks – select some blocks, input a new scale factor. Occasionally useful, not that exciting.

Ssq
 Edit multiple text entities in order by position: select a column or row of text and Ssq highlights them one at a time and asks for a replacement value. Doesn’t speed up the typing, but saves time because you don’t have to keep track of where you were.

 See also Go.

Sst
 Another pattern maker, like Spyr.lsp but capable of more elaborate patterns. Sst stores multiple line lengths and angles in lists so that rather than drawing a pattern of single lines it uses as many as you care to draw. The angle of each line segment is the input angle taken as an angle from the direction of the previous segment and not an absolute angle, so the results are pleasantly hard to predict.

 Why, you ask, is such a thing necessary? Well, it led to Zlin, which might be of some use...or lead to something which might be...

Sta
 Temporary graphics – a circle of stars. Located under the Geometry>Other pulldown with a few similarly relaxing functions.

Stand

Standard detail tag installer. Typically called from the Misc. icon menu.

Stoat

 Extracts all text and attribute values in a drawing to the text file Alltext.txt. The text from successive drawings is appended to the same file, and the name of the drawing is placed every twenty lines so that you can tell from which drawing a given line was extracted. You can run Stoat on a directory with Fang and then quickly search the text with a text editor, which is very useful when you are trying to track down a single errant bit of information.

Strafe
 One sometimes finds one line of text filling several columns, with spaces added between words to reposition them. This clever trick must give someone a great deal of satisfaction, but it is sloppy and a pain to edit.

 Strafe breaks a text entity at each occurrence of a specified number (or more) of spaces, so you can convert these abominations into proper columns of text and neaten them up with Vbm or Tar or something.

 Strafe makes new entities which match the original perfectly – the new text should look exactly like the old stuff, unless the current text style doesn’t match the one in which the text was drawn, in which case it will appear to suddenly change. If this happens then you can use Sch to restyle the text. You could also use the Change Properties dialog box, but the thing always reminds me of one of those combination hammer/pliers/screwdriver tools – it sort of works, but everything turns out to be slower and more difficult than most people can stand.

Styx

 A lot of drawings use the Txt font for the Standard text style, and do not look good as a result. Styx changes Standard to use simplex and a width of 0.85, which seems to be pretty universal; Simplex is essentially the same font as Romans but the insertion points are exactly where they should be, whereas with Romans they are a fraction of a unit off.

 See also the section on the Rocket font.

Subx

 A recent project involved several hundred drawings with xrefs in an elaborate directory structure which the parent drawings knew nothing about.

 Subx searches subdirectories for missing xrefs and repaths them there. It can be batched with Fang, so a problem which would have required several days to fix was done in an hour.

 See also Xxlis, which tells you what’s going on with xrefs, and Fux, which can repath files to other locations.
Sun

 Select an entity or a block or polyline subentity and get its entity data list. Handy if you know entity data lists, otherwise this is one of the few things in life that you can safely ignore just because you don’t understand it.

Sundog

 Most cloud drawing routines require that points be picked in one direction so that the resulting cloud bulges out and not in. Cm can decide which way the bulges need to go, but screws up very occasionally, in which case Sundog can turn the cloud the right way out.

 Revised: Sundog can now either reverse a cloud or adjust the bulge factor.

Surf

 Select entities, pick two points. Surf make a rectangular wipeout entity with the points as two opposite corners and brings the selected objects to the front, everything else inside the rectangle remains hidden behind it. Allows one to quickly chop out an area of an xref to accommodate a table or other interesting data. Surf makes the selected entities and the wipeout into a group so that they can be moved around without having to select each individual thing.

 Named for the Surfaris, who did the related hit song.

See also Wiz and Wx.

Surv

 Survey drawings usually contain about one layer for each entity in the drawing (not that they are the only offenders), which tends to get in the way if you are doing anything which needs you to keep track of layers.

 Surv moves selected entities to a common layer and colours and linetypes them to match the layer they came from – they don’t change appearance but you can get rid of the extra layers. Surv puts a small temporary marker at the insertion of each changed entity because otherwise – in an interesting parallel to many system utilities – you would have no idea if it had actually done anything.

Swx
 Switch positions of two groups of entities by selecting one group, a base point, the second group, and another base point. Easier than moving one group out of the way, putting the second group in its place, and moving the first group to where the second one used to be.

 Generally this one doesn't get rave reviews - largely I think because it seems to require a brain to use. Actually a modicum of common sense will suffice, if you have any this is worth a try. I use it all the time.

Sz
 Blocks often surround attributes with other entities so that there is only room for a limited number of letters - typically seven for a filename, five for the date, etc. Sz reduces the width scale factor so as to squash the text into a smaller space. Each time you pick the attribute it will be compressed more until it falls below the threshold of legibility (0.5) at which point it will be restored to full width and you can start again.

 Notes:

1. This will have no effect on fitted attributes, so if it won't work check the attribute for fitted justification and the designer for sanity.

2. Sz will also work on text, although I prefer Wt which allows selection by crossing and windowing.

3. See also Squab.

T

 This isn’t really a function, just a modification which makes trim a little easier to use by turning off snap while the trim command is active and then turning it back on afterward. Like C, the benefits are out of all proportion to the complexity of the code.

T3

 Text which has been imported from other sources (i.e. when you can get your hands on an i/o list in Excel rather than typing it in by hand) usually needs to be split into shorter chunks. You could use Wm, but T3 allows you to say how many lines to split it into, the default being 3.

 See also 3T, which reverses the process.

Tafi

 Tag find – finds instrument tags which contain two or more given strings.

Tar

 Pick a ratty looking chart done with loose text in boxes. Tar will find the location of the box surrounding each text entity and neatly centre it therein. Makes a major difference in a very short time, although if the frame itself is a mess this isn’t really going to help.

 You should be zoomed in close enough to read the text for this to work well, and none of the boxes surrounding text you have selected can be off the screen.

 Also contains Tal, which does the same thing but which left justifies the text 2 units x dimscale from the left side of the box.

 See also Tea, Teal, Tear, Gyc, and Ecen.

Tara

 Importing data into a drawing – say descriptions from an i/o spreadsheet into schematics – can require a lot of messing around to make it fit. Tara rearranges selected text to fit neatly in a box – pick the text and two corners.

 Saves a lot of time, stands for Text Arrange so you can remember it.

Tarc

 Select three circles: one to move and two base circles. Tarc moves the first one to be tangent to the other two if such an arrangement is possible. This isn’t good for much, with the possible exception of making very precise cable tray fills, but more elaborate uses may suggest themselves.

Tater (aliased to TT)

 Tater will replace the string in any text, dimension text, attribute or attdef entity with one either typed in or taken from an existing entity of one of the above types.

 It can also replace the string in constant attributes - I was recently working on a set of drawings in which the revision number and drawing name were contained in constant attributes which had to be updated in the block table in order to change the displayed value, a stroke of genius which made it difficult for saboteurs to upset the filing system at the small cost of making it nearly impossible for anyone else to work with it at all.

 Tater handled these oddities with no trouble at all, although since it does so (as presumably did the original method) by updating the block definition in the tables, the value in this attribute will be the same for all insertions in the drawing - alter one and you alter them all. The same is true of text contained in a block (as distinct from an attribute.)

 Tater, by the way, can get at text no matter how deeply nested it is.

Other notes:

1. Tater updates block subentities after changing them so that they are displayed correctly. The Undo command doesn't know about this, so if you undo changes made by Tater to a block or dimension you will have to either Regen or update the de-tatered entities with Irg.

2. Tater changes the 1 association list in an entity. If it is used on a loose attdef it will therefore change the prompt string and not the displayed value, which is the tag name. I was tempted to make it change the tag, but decided to bow to the superior wisdom of Autodesk - there was a remarkable intuitive correctness to the layout and use of the early releases of AutoCAD, and while this is sometimes obscured by the recent avalanche of features I tend to respect the intentions of its designers as far as possible.

3. Tater is a nice command and is dedicated to all the English teachers who have attempted in their dilute way to stamp out the word "nice". Speaking of words, the drawing recovery command in Acad 12 used the term "elision". For those not possessed of a dictionary, this is a real word meaning, as you might suspect, removal.

Revised: Tater now adjusts the attribute width scale factor if the attribute is too wide for the space it occupies. This depends on Squab.lsp being available and having data for the block being edited, although Tater will still work if this isn’t the case. If you want to add width data for new blocks you can edit Squab.lsp.

 Note that this can also be used to adjust the width scale on an existing attribute: just select it with Tater and when asked for a new value select it again; Tater will then compress it as required.

 See Squab to adjust all insertions of all known blocks.

Taz
 Sometimes one wants to move an entity to a different layer. This isn't too difficult for most entities, but when dealing with blocks, dimensions, etc., subentities have an annoying habit of remaining on their original layer and in their original colour.

 Taz gets around this by modifying the block tables - it places all subentities on layer 0 and colours them bylayer so that they appear on the layer the block is inserted on.

 Taz asks for a layer name, which can be entered from the keyboard or indicated by picking another entity. If the layer doesn't exist you will be asked if you want to create it. Taz then prompts for entities to move, modifies the subentities, and moves everything to the chosen layer.

Caveats:

1. Since the block tables are changed all insertions of any picked block will be changed - the insertion layer will remain the same for ones not in the selection set, but all subentities will be placed on that layer.

2. Undo seems to be able to handle direct modifications to the block tables, but I strongly recommend saving before attempting to Undo through Taz.

3. Taz has nothing to do with the dog of the same name – it was written before I got him, and he came with the name. Also a suitcase full of dog toys and an old electric guitar he couldn’t play, but that’s another story.

See also Ezo.

Tb

 Instrument balloons sometimes contain text which is too long for the space and laps over the circle. You can either squash it to fit with Squab, or break the blocks with Tb. Select the blocks in question and Tb puts breaks in as required. If the text is modified to be short enough not to require a break then the break is removed.

 Tb also contains Twa, which set all attributes in selected blocks to 0.9 width, and Bt which replaces chopped blocks with the un-chopped version.

Tbdb

 Maintains a .csv database of drawing names and title block data. When you open a drawing Tbdb looks for a copy of Dwglist.csv in the directory containing the drawing. If it’s there then Tbdb either adds or updates the information for the current file. You can open Dwglist.csv in Excel by double clicking on it.

 Title block information is extracted using Trout.lsp, which has to know about your title block.

 See also Csv, which can suck a csv file into a drawing, and Gostak/Go.

Tbone
 Brad asked me the other day if I could write a routine which would let him fillet two lines without necessarily truncating them to the ends of the arc. This presented some difficulties since I didn't want to recreate the Fillet command from scratch; also, while a line which doesn't reach the arc end should be extended to meet it, it is not intuitively apparent when a line which is too long should be truncated and when it should be ignored.

 I started by writing a routine to call the Fillet command with two line (entity name and pick point) lists. This worked ok, so I modified it to restore the lines to their original length after filleting. My first thought was to extract the line start and end for each line, (subst) them back into the current data list, and (entmod) them back to the original length.

 As I wrote the code it occurred to me that since I had already assigned the entity data to a variable I could just (entmod) it and restore the entity to its pre-fillet condition, a much simpler solution. This left deciding when to restore the lines. This is somewhat arbitrary but seems to work well: if a line crosses the intersection point of the lines it is restored, otherwise it is truncated. This part is less elegant, so if you want the mechanism you will have to examine the code.

Tch
 Change one or more lines of text to a single text string which is either typed in or copied from an existing text string or attribute by picking it. One of the few truly indispensable Lisps.

Tdi

 I can’t remember what this was for, but it wasn’t anything good. An anonymous person named after a popular explosive wanted to reset the Tdindwg (total time spent editing a drawing) system variable, presumably to screw up somebody’s automated tracking system. Merely blocking out the drawing doesn’t do this, but Tdi does, and gives you the warm feeling you only get from changing something you shouldn’t be messing with.

Tea
 Centre text in a box. Select a stack of text, pick two corners of a box, the text will be neatly middle rejustified and moved so that the centre point of the text is at the centre point of the box.

 Makes neatly drawn tables so easy that you will be tempted to sneer at those who make sloppy drawings.

 See also Tv, Tar, and Tic.

Teal
 The same as Tea, but the text is left justified along the left side of the box. Dedicated to Kim Buye, who suggested the program and unnervingly also came up with the name I think I would have picked.

Tear

 The third in the Tea set – right justifies the text.

Tech/Te
 Search and replace, like the immortal Chgtext, but will do its thing on any entities that look like text.

 Tech retains the search string as the default for the next use. This is harder to do for the replace string since it is hard to differentiate between a <Return> meaning "Accept the default" and a <Return> indicating an empty string.

 It also indicates how many replacements it made, and in how many lines - if there were more replacements than lines but you only wanted to change one string in each entity then you can assume something went wrong.

 See also Tater/Tt, Texas/Tx, and Mach.

Ten

 It is difficult to use the insertion point of a block as a base point for movement, rotation, etc. if it consists only of attributes – using the insertion object snap will give you the insertion of the attribute you pick rather than that of the block. Ten returns the block insertion point, it is located on the popup menu with the standard osnaps. If you want to enter the command by hand it is entered (ten) and not Ten.
Term
 Put an arrowhead on the end of a line closest to the pick point. Motivated by the standard comment "I think I seen some other program do that once" rather than any perceived need. Matches the arrowhead size to that used by Dim.

Tess
 Draws a 3D polyline representation of a tesseract - a structure that is the four dimensional equivalent of a cube, often referred to as a hypercube.

 Since a four dimensional object can't be drawn completely in three dimensions, this bears the same relation to the (hypothetical) real thing that a drawing of a cube on paper does to a real cube - each is an attempt to represent something in one less dimension than it has.

 In any event, Tess draws a tesseract with its base coplanar with the current UCS, so you will have to view it from some other angle for it to look like something other than a picture frame. Then you can put on your resume that you have some experience in 3D drafting and also some in 4D.

Texas/Tx
 I can't be bothered to rewrite the notes for Tater here, so: Texas is like tater but will replace the text in multiple entities (attributes, text, dimension text, text within blocks, constant attributes, etc.) at once.

 The Nentsel function on which it is based doesn't support windowing so entities will have to be individually picked, but it still saves a lot of time over individually using ddatte. Also Texas, like Tater, allows copying a text string from an existing entity in case you are not an enthusiastic typist.

 See also DDD.

Tf

 I recently had a complaint that the loop on a cabletag leader was backwards. The user couldn’t mirror it because there were numerous right angles on the way to the tag. Rather than popping up a dialog box which says: “Don’t Be Neurotic,” Tf flips the loop over.

Tga
 Draw a polyline loop around one or more lines and insert cable tag blocks. Allows you to specify which direction the tags are arrayed in and keeps adding tags while text is entered to occupy them.

 Tga is aliased to Tag in case you like that better.

 Revised: Tga now examines the cabletag block definition to see how big it is, so you can modify it and Tga should still work.

 Revised again: includes Tg, which draws another style of loop.

 And again: Tca draws an arc-style loop.

 See also Pga, for yet another loop style, Mull, which reorders the tags, and Gostak which can suck text into them.

Tic
 Reposition text in circles: select the circles, if there is any text in them it will be centred in them. Great for cleaning up archaic drawings where the relays aren’t blocks and the text is nowhere near the centre. Also draws a nice (temporary) pattern around each circle.

Tiger
 A line repair utility, like Wolf, but one which only repairs lines if they are collinear to several decimal places. Very useful. The long-awaited update which allows it to deal with polylines is still being awaited.

 Updated: Tiger now also connects polylines and lwpolylines.

 Aliased to Ti.

Tk

 Suck text from one entity into another, kill the original if it was text. Originally Tk killed the source entity no matter what it was, but it quickly became apparent that erasing a block with fifty attributes because one had been used was not a good idea. Very useful.

Tlen

 Measure heat trace lines – select the lines in question and Tlen will tell you how long they are. For some reason designers are often reluctant to use CAD for anything other than drawing nice pictures, but they all seem to have a weakness for using it to determine the amount of heat trace they need.

 See also Dif, another distance finder.

Tmx

 An attempt to instill order where there is none, something which computers aren’t really that good at. Tmx looks on both sides of selected terminal blocks for lines and moves them into the correct position relative to the terminal. Works surprisingly well given the infinite number of wrong ways to place a wire. Can be frightening to watch when you realize that the computer has just taken over the drawing and is moving much too fast for you to keep track of what it is doing.

Tork

 Another drawing rotation utility. Derotates a group of text entities around their common centre point only if they aren’t already at an allowable angle.

Tota

 Totals the value of all numbers in all selected text strings. Originally written to total the watts in a lighting panel which was changing faster than anyone could keep up with.

 There have been some complaints that adding the string “12 and 24” to “12 with 3” adds all four numbers and returns 51 instead of mysteriously knowing whether to add the first pair or the last or all of them, but our research department still hasn’t come up with a way to write a program which is more intelligent than a human being, and if they had we would use it to deflect criticism, not to total numbers.

 Revised: Tota now offers to put the total into a selected text-type entity. If the entity contains a string and numbers then only the number is replaced, if there are multiple numbers then only the last one is replaced.

Tray
 Draw a hatched cable tray elbow. Input the bend radius and tray width, pick the centre point and the quadrant of the circle you want the elbow drawn in, Tray draws the elbow and hatches it. Nobody seems to rave about this but I find it very useful.

Trayhach

 Hatch a cable tray – sets up the hatch parameters and prompts you to select the tray in question. Much quicker than setting everything up manually.

Trg

 Ground a tray – pick the ground wire and the side of the tray, Trg curves the wire over to the side and puts a ground connection block at the intersection. Also it puts the ground wire on the correct layer.

Trouble
 Diagnostic information, for use if things aren’t working right. If you can’t run this from the command line then RocketCad isn’t loading properly and you need to check to see if you are using the correct profile and if your paths are correct, if you can then it will help diagnose the problem. You should also check to see if the software is loaded on your computer, because there was one notable incident … but some things are probably best forgotten.

Trout

 Extracts title block information into a file c:\Titledat.csv, which Excel can open (just double-click it) and you can save as an Excel file. Knows a lot of title blocks, but has to be customized for new ones. Can be batched with Fang, which is the basic idea.

 See Tbdb.

Trx
 Draw a vertical tray section – a box with an X through it. The resulting figure is a polyline so that it can be easily moved, hatched, or erased.

Ts

 A quick utility for drawing terminal strips – draws a 35mm wide box between the midpoint of a line and the midpoint of another, or vertically downwards to a point in space. Surprisingly useful, in a surprisingly limited way. Don’t forget to use the terminal blocks under the Blocks menu.

Ttb

 This is new: take a chart which is done in loose text but for which you have a block for each row. Show Ttb the text, give it the block name and the first insertion point and vertical spacing, it will replace the text with blocks containing the values.

 Caveats:

· Ttb calls some subroutines from Snort.lsp, which must be available.

· Each column must have at least one text entity in it or it will be ignored.

· If there aren’t enough attributes in the block to accept the text in each row then the excess will be discarded.

Tv
 Columnize text and centre it in a box. This is like Tea, but it adjusts the line spacing on the text which makes it ideal if you want a neat column, but if your box contains text in different heights or that you want to leave nonstandard spaces between then Tea is a better bet.

Twip

 Draws a segment of twisted pair wiring, with a wavelength of 7.5 and an amplitude of 2.5, both of which can be changed if you don’t mind editing the file. Useful if you don’t want your control schematics to look like barbed wire.

Txs
 Global text size changer: you specify initial and desired sizes, and anything in the drawing of the initial size will be changed to the desired one. I would like to be able to say that this was mystically inspired by a source of ideas that only I have access to but it was actually suggested by MI, who has an amazing talent for ferreting out half-baked lisps and who was dissatisfied with a similar routine which changed every text line in a drawing to one height - a useful ability if your output device is a daisy wheel printer.

Txtt

 Change any selected text string, attribute, etc. to the filename without the .dwg extension or the path.

Also contains:

· -, text to “-“
· 20, text to “#2/0 GND”
· 2G, text to “#2 GND”
· Asr, text to A/R.

· Asb, text to “As-Built Per Field Markups”
· Barr, text to “Barrier”
· Blk - text to Blk-1 and Blk-2.
· Cod, text to "Continued on Dwg."
· Coda, text to "Continued on Dwg. Current Drawing Name"
· Ea, empty the selected attribute.

· Future, text to “Future”

· Hold, text to “Hold”

· Ifa, text to “Issued for Bid”
· Ifb, text to “Issued for Bid”
· Ifc, text to “Issued for Construction”
· Rei, text to “Re-Issued for Construction”
· Note, text to “Note 1”
· N1, text to “Note 1”
· N2, text to “Note 2”
· N3, text to “Note 3”
· Nts, text to “NTS”
· Part, text to “Part Of”
· Scal, text to “1 : Drawing Scale”
· Space, text to “Space”
· Spare, text to “Spare” or “Spare n”, depending – the selected text entity is changed to SPARE unless it already says SPARE, in which case it is changed to SPARE 1. If it says “SPARE n” then it isn’t changed, but subsequent entities are changed to SPARE n+1, n+2, etc. In other words if you select “SPARE 1” then the next text two text lines you select are changed to “SPARE 2” and “SPARE 3”.

· Teck, text to “Teck”
· Tdd, text to date: “11-03-30” - yy-mm-dd
· Tldd - text to long date: "2013-03-30" - yyyy-mm-dd.
· Tsd, text to date: “27 Jan 11”
· Txd, text to date in short year format (05.05.05)
· Txdd, text to date in long year format (2005.05.05)
· Txpp, text to title with path.
Twod

 Getting a drawing ready to Solprof (flatten) usually involves binding xrefs and exploding blocks. This led to the drawings becoming much larger and more tedious to work with. Twod erases everything except 3d solids, typically reducing the number of entities by 75% and speeding things up by a similar amount. You should run Grak to kill groups before you use it so that you aren’t erasing an entire group when you were only after one thing in it.

Typ
 Swap the Typ. tag from side to side in a material tag block. Not Earth-shaking, but it is quite satisfying to have a routine to deal with one of the minor irritations which crop up when rearranging a drawing. Typ also adds a Typ. tag if the block doesn’t already have one, you can tack a number on if you like.

 A user (actually someone leaning over to watch) recently pointed out that many people like to use (Typ.) rather than the more economical Typ. I am not really sure what purpose the parentheses are supposed to serve, since this isn’t a note in the middle of a sentence. Perhaps parentheses are about to replace double quotes as the most “overused” form of “punctuation.”

 Revised: if both quantity attributes are filled then Typ swaps them.

Uc
 Convert text to upper case. Similar to Lcs.lsp, which isn’t included any more because it never got used. Uc works on text and will also convert all attribute values in any picked block.

 Lower case with initial capitals is the most legible method of writing, hence the relative rarity of books printed in all caps, but there is something about engineering drawings that makes people want to emphasize things – possibly the knowledge that most designers are about ninety years old and half blind.

 Also contains:

 Uct, which changes only a selected attribute and is handy if there is by some chance lower case text elsewhere in a block which you need to keep.

 Lc: lowercase a single text line or attribute.

 Ic: initial capitalize single text line or attribute.

 Fcase: initial capitalize all selected text.

Ud

 A routine containing a list of every current dimension setting with a very brief explanation of what it does. You can copy this to a different name, edit the settings to match your standards, and then run it in every file conforming to the standard for which it was made.

 You could of course use a prototype drawing and do things right from the start, or use the design centre to drag dimension styles between drawings, but these approaches don’t help to deal with the millions of drawings that were not drawn to any standard or which originated at companies using different ones.

 Ud can be run as a batch with Fang.

 Later note: see Daub, which is up to date as of 2012 and which can make one of these.

Upright

 There are some acceptable angles for text, and some which aren’t. (See the note under North Arrows) Upright finds the ones which are upside down and rotates them 180 (. It can also rejustify them so that the origin remains in something like the original location even when the text has been rotated, and it can do the same thing to blocks. This is very powerful, so be careful and remember the Undo command.

Us

 A number of people (and it got pretty tedious after the first two) have told me that the wonderful thing about their favourite Cad program (not AutoCAD, in case you aren't following this) is that it allows one to pick a point and

then cycle through the entities which cross it so as to select one which is otherwise inaccessible. Once in a blue moon I feel the need for such an ability, but I mostly wrote this so that I could ignore them.

 Run US, select the objects you want to look at - a small crossing box is generally best, but I've left that open - and then keep hitting <Return> until the one you want is highlighted. US will cycle through the selection set until you stop it, so you don't have to choose your target on the first pass. Then hit any letter and <Return>, or just *Cancel*.

 The entity in question is now the Previous selection set.

 Uv

 This contains two routines: Uv, which lists all of the user system variables, and Kuv, which empties them. This is not all that useful but there are some programs which screw up and fill the user sysvars with trash and can only be forced to reset by emptying them.

Vb

 Venetian blind - multiple text rejustify to fit. This takes a number of lines of text and fits them between two specified points while keeping the original vertical placement in the drawing.

 Vb and the other similar programs are very nice for cleaning up sloppy columns of text. I once had occasion to work on a set of drawings done by a party who did not use snap, considered all text styles to be identical, and who liked to mix variable and fixed height text. Vbc enabled me to fix the average drawing in about five minutes, which impressed both the boss and my fellow employees who had refused to have anything to do with the situation. (An unretouched testimonial by an innocent party.)

 Another trick worth keeping in mind if you're bored: Type Vb, window the whole drawing and then watch all of the text suck into a single column. Then tell your supervisor it just happened by itself.

 The variants:

· Vbc - Centred. This one allows you to pick two points and centres the text on a point halfway between them, or pick one point and <Return> to centre on it.

· Vbl - Left justified.

· Vbr - Right justified.

· Vbm - Middle justified.

· Vbml – Middle Left justified

· Vbmr – Middle Right

Vbox

 Draw a box in model space which is slightly larger than the current viewport is in paper space, so that you can see in ms where your viewport is, but you can’t see the box in ps.
Vess

 Vessel maker – drag a box, Vess fills it with a vessel, elliptical endcaps and all. Useful if you have to show something and you can’t get a mechanical drawing to chop up, although there is the danger when faking piping that someone may try to take it seriously.

Vino

 Select a stack of terminal blocks, Vino will replace attributes in them (if there is more than one attribute per block you will have to show it which one to change) in vertical order with specified increment and prefix and suffix. In other words it is a lot like Eno, which isn’t surprising since that’s what it was copied from. Very useful.

 Updated – Vino can now do blocks in a grid, working from left to right and top to bottom.

 Vint does the same for text.

Vis
 One of the popular add-on packages for AutoCAD inserts all of its standard blocks with invisible attributes so that they can initially be edited only with its own built in routine. Vis remedies this situation – it turns any invisible attributes in a selected block back on.

 If you find Vis useful then you might also want to look at Flat – there isn't much similarity between the two, but drawings which require Vis often seem to benefit from Flat.

Vizi

 Autocad now has the insane ability to make entities invisible. Vizi finds these and makes them appear. Also contains Izi, which makes them invisible and is useful if you’re a lunatic.
VL/VU/VT
 VL locks all viewports and Vu unlocks them.

 One of the more brilliant and well thought out features in the recent releases of AutoCAD is the ability to lock viewports. Previously if you panned or zoomed while in a model space viewport in paper space you would completely destroy the alignment between the two spaces for that viewport. Now if the vport is locked and you try to zoom or pan then Acad switches to paper space, runs the command, and then gets back into the viewport.

 It might be a good idea to lock all viewports each time a drawing is opened, they could thus be created and aligned with the desired model space geometry, then once the drawing was reopened they would be safe from accidental zooming unless they were specifically unlocked.

 Vt adjusts the view twist angle in a viewport, or by default sets it to 0.

Vvb
 Vertical Venetian Blind. Takes a column of text and respaces it vertically. You specify the start point and the vertical spacing. Note that this does not move text horizontally, only vertically. Vvb offers either the correct vertical spacing or the last spacing entered - if any - as the default. If you don’t like the last one you tried you can snap it back to the default by entering a D.

 Revised: Vvb now offers the insertion point of the top entity as the default starting point and prints a nice temporary warning graphic if you are using it on text of different heights.

 Revised again: works in viewports which have been rotated, and on stacks of text which are rotated.

 Added: Vvbc, which also aligns the insertion points of the text horizontally with the selected point. Of course this means that if your stack of text is all left justified but has been shuffled to make them roughly line up, you may have to use Vbc.lsp on them. Or you could complain about drawings done by idiots.

 See also Vbc.lsp and Vbm.lsp.

Walt

 A client … people who are always complaining are a valuable resource because they are sure to let you know if something needs to be fixed and are often a good source of ideas for new programs. This knowledge can to some extent relieve the desire to give them a good slap.

 Walt resets the width scale on every text and attdef in a drawing to 1. It is intended for use making wholesale changes to standard drawings with a batch.

 The industry used to very strongly favor a text width of either 0.8 or 0.85, which is odd because the standard fonts are designed for legibility and based on some pretty convincing research, and they were obviously designed to be used at a width of 1. In the past few years there has been a trend towards using wider text, but no clear consensus has emerged. A scale of 0.9 currently looks pretty good - it isn’t so much wider than 0.85 that it will screw up blocks by taking up too much space, and it isn’t so much narrower than 1.0 that it looks jarringly different.

Water

 This is a program for programmers. Water takes a drawing and converts it into individual lines and then writes a program or subroutine to redraw it on the screen as a set of grdraw vectors, in other words a temporary image. It can write a program to redraw the image at a constant scale and location in space, at a constant size relative to the current screen, or a subroutine which redraws it at a size and location set by the calling routine.

 Example programs Exclam, Ok, Sk and Skul, all of which were generated by Water, are included.

 Note: Water is not loaded by default, you will have to do so before using it.

Wc

 The last few releases of AutoCAD have changed the way that polyline widths are printed – originally pline width overrode colour width, then a narrow colour could cause a wide pline to print with the (narrower) colour width. Now it seems that a narrow colour overrides a wider pline unless the pline width is quite a lot bigger than the colour-specified width.

 This may be wrong - perhaps a pattern could be revealed by making a grid of polylines with the width increasing along one axis and the colour-specified width on the other and plotting it under different versions of acad.

 But why waste time on something that will probably keep changing? Wc sets the width of all clouds (identified as polylines with more than three segments, each of which has a bulge factor) to 0.75 units, which seems to work pretty well. It also contains Cw, which sets the width to 0. If you need a different width the code can be edited in a few seconds.

Wir
 Jb wiring installer – draws wiring down one side of a terminal strip, complete with fillets. If you use this consistently it will save you enough time to have an extra-long lunch once every four years.

 See Junc.

Wireline
 Change all line numbers in a block. Select a block and input a starting number, Wireline replaces the attribute values with sequential numbers. It is intended for quickly renumbering line number blocks, but could also be used for other things.

Wiretag
 Insert a horizontal or vertical left side wire tag block. Located on the Misc icon menu.

Wiretagr
 Insert a horizontal or vertical right side wire tag block. Located on the Misc icon menu, and it is probably faster to get it from there than to remember and type the name.

Wiz/Wx

 Wiz puts a wipeout under selected entities.

 The ideal procedure when working on xrefs seems to be:

· Check the layering in the drawing you intend to xref, ideally with Ezlay. Then fix it, because it won’t be correct.

· Wblock all the text into a separate file, delete any which you don’t need, and make it all the correct height and style, which it won’t be.

· Reload the xref and freeze any layers you don’t need, which should include the text layers, which there will be lots more of than there is any rational need for.

· Bring in the drawing containing the text and reposition and edit it as needed.

 This applies especially to area class drawings, since you can’t hatch parts of an xref. You can however trace the outlines of buildings and tanks (see Pc for the latter) and hatch them, but unless you want to hatch over the text it must be part of the current drawing.

 If one is doing a quick and dirty fix to an existing drawing, wants to put text on top of a hatch without redrawing the whole thing, or if the drawing is very crowded then wipeouts become a necessity.

 Revised: Wiz now makes the selected entities and the wipeout entity into a group, so that you can move them all by selecting one. (A group can be killed with Dg.)

 Wiz now includes Wx, which draws a circular wipeout under selected entities. You have to specify the centre and radius of the circle.

 See also Surf.

Wlay
 I was recently asked to print out some survey drawings which were drawn under severe time and sense constraints. As they appeared on the screen the background vanished under layer after layer of text, each area being repeatedly overwritten until I expected the whole mess to fall over and slide off the bottom of the screen. By the time it was all displayed there was no unoccupied space left.

 The fellow who was supposed to be dealing with the drawings asked if anything could be salvaged. He rejected my suggestion that we find a delivery service in the city that would tar and feather someone, so I wrote Wlay.

 This program wblocks each layer in a drawing. Each resulting drawing is named after the layer with a number prefixed to it to prevent long layer names from truncating to the same filename and overwriting each other. Wlay prints the layer name and drawing name in the lower left corner, draws a border around the extents so that the drawings can be plotted on transparencies and lined up with each other, and writes a log file matching each layer name to the resulting drawing name and listing which layers were empty and thus ignored.

 Is this generally useful? Not really, but if your clients want to know about layers they can't fail to be impressed with a drawing dissected into a coil-bound stack of transparencies.

Wm
 Move words from one text line to another. Pick two lines, if the first is above the other then the last word is moved from the upper line to the start of the lower one, if the first is below the second then the last word is moved from it to the start of the upper line. In other words it does just what you might expect. If there is no destination line then a new one is created in the right position relative to the first one.

 The critic might point that Mtext makes this unnecessary, but:

· There are a vast number of existing drawings which already have text in them.

· Mtext sucks.

· You don’t need Mtext if you have Wm and Vbc.

 Revised: Wm can now move words between attributes in a block insertion, and between text and attributes. If there is no destination attribute then a line of text is created in the appropriate position, but it is not added to the block.

Wobble

 Make an existing entity into heat trace. Wog can’t draw circles, but wobble can make an existing circle into heat trace line, which is handy if you have to heat trace the base of a flare stack. Its default wavelength and amplitude are both 1.5 times Dimscale, which is half of what Wog uses, but which seems to look better on small entities.

 Wobble also has the ability to wobble the entity it just created, and to repeat this as many times as you would like, which is interesting if you have a fast machine. For real work the number of cycles should be set to 1.

Wog
 Draw wiggly heat trace lines. These are put on the Htrace layer and have a wavelength and amplitude of 3 times Dimscale. Wog draws lines until a <Return> is entered and then puts a power kit symbol on the start end and an end seal on the other end.

Wolf

 A line repairer with discretion - Wolf will only combine two lines into one if they are collinear, that is if one could be extended to lie over top of the other without rotating it or shifting it sideways. Select some lines, Wolf will join the ones which need to be fixed and ignore the rest.

 Wolf allows for lines being out of alignment by a number of drawing units equal to the value of the sysvar Dimscale, so if it's being too liberal you can either reset dimscale or modify Wolf. So far this has worked ok, though.

 See also Tiger/Ti which does the same thing but is much less forgiving.

Wormdog

 Rotate an attribute by directly selecting it. Another example of the amazing things you can do with the archaic and powerful –attedit command.

 See also Mach.

Wrat

 Write attribute tags from a selected block to a file named after the block. Crat does the same thing with the entire block definition.

Wt

 Multiple text and attdef width scale factor change. Occasionally invaluable.

 Also contains Ww, which sets the width of selected text to 1, which is beginning to stand out as the logical and more legible alternative to 0.8, 0.9, 0.85 etc. Quite often if designers complain about text being illegible they are as happy with a width of 1 as they would be with a larger size.

 Revised: now includes W9 which resets it to 0.9, and W8 which does 0.8.

 If you need to adjust blocks you will have to use Sz, Marmot, or Squab.

Xa

 Search & replace attdef tags and prompts. Originally created for making stacks of attdefs for use in the revision areas of title blocks. This will save enough time that you will be able to remember not to put the prompts in all caps and not to preface every single prompt with “Enter.”

Xf

 Toggle xclip frames on/off. There may be a button on a toolbar somewhere that does this, but it is probably carefully hidden and looks like someone trying to artificially inseminate a deck chair.

 Later: Xf now toggles xclip frames, ole frames, and wipeout frames. If they aren’t in synch it makes them match.

 Xf also contains Xup, which reloads all xrefs.

Xing

 Crossing locator and breaker. Select a number of lines, Xing will find the intersections between them (if any) and break the vertical line of each crossing unless it is an endpoint in which case it will be untouched. Not only is this much faster than doing it by hand (it prints the elapsed time in case you are in doubt), it is more uniform than your

co-workers who think that snap is an infringement on their freedom of expression and is much more interesting to watch (unless they are strikingly good looking or belong to a cult which requires the wearing of a gorilla suit at all times).

Notes:

1. If your lines aren't on snap then they may either overlap slightly in which case endpoints will be treated as intersections and cut, or they may not meet in which case there will be no intersection and nothing will happen. You just can't place lines to sixteen decimal places by eye.

2. This is an updated version of Xing. Unlike the original it doesn't care how far out you are zoomed, and it adjusts the breakpoints so that angled lines break at the same vertical distance as perfectly vertical ones. It also prompts you for a break distance (halfwidth) and saves that as the default.

3. Note saved from the end of the old description: Xing is a very useful and reliable routine and only modesty Prevents my running on at some length about it.

See also Zing and Penguin.

XL

 Extendo-trim: extend lines to a target line or trim them back, depending on whether they are too long or too short.

Xlist

 Makes a file: c:/xrefs.csv, listing all xrefs in a drawing and their status.
Xmark

 Put a marker at the insertion of each entity in the drawing which contains extended data.

 The marker is ring shaped, all markers for a specific application are the same colour, if there is data for more than one application attached to an entity then successive markers are scaled so that they don’t overlap.

 See also Kx.

Xnames

 Place or update the block Xrefname which lists all the xrefs in the drawing. Has to be modified to work with a specific title block. Intended to be run as each drawing is opened so as to keep track of which xrefs are in use.

 Xrefs are a good idea and very useful for some purposes, but using them for title blocks or logos or to keep file sizes down are all seemingly good ideas which end up being immensely more trouble than they are worth.

Xpath

 Repath xrefs, can do them by name or repath every one in the drawing. This will require editing the file, but the last three lines are all that will need to be changed. Under R12 this required about a hundred lines of code, under R14 half that again, now we are down to seven.

 Can be run from a batch with Fang.

Xt

 Explode text. Everyone wants to do this but nobody can remember why. Still, it’s fun to play with.

 (Xt can also explode other things.)
Yalf

 After writing Flay.lsp, which freezes all layers but the one selected, I found myself requiring exactly the opposite - a routine which would freeze only a selected layer. Yalf is the result.

 Revised for use turning off xref layers – allows direct subentity selection, and if the selected entity is on layer zero attempts to find a parent entity whose layer can be turned off. Saves a lot of time when working with xrefs.

 See also Flay and Flame, and Grl.

Yang

 Pipe end drawer – makes the traditional Yin/Yang symbol with hatching which pipers use to indicate that you are looking down the open end of a pipe. Show it a circle or tell it to make one, it does the rest.

Ze

 Zoom Extents by doing a Zoom Window using the Extmin and Extmax system variables as the corners. Saves doing Zoom previous six times, or doing a Zoom All if your computer has forgotten the first three zooms you did. If you have not forced a regen zooming inward, this shouldn't force one going out (and if it does you would have had to do one anyway). Also a Zoom Previous will undo the effect of this, whereas it won't undo the effect of another Zoom P.

 Revised: if you use Ze in a viewport it will change to model space first.

 Contains Zoob, which will do a zoom e in a viewport, even if it’s locked.

 Also Zxp which will zoom a viewport to a desired scale relative to paper space without finding the reciprocal of the scale.

 See Boo which is similar but doesn’t let you get lost.

Zen

 Change entity layers from the standard Rocket layers to another standard. This can be run on a drawing at any point, or you can run it on the blocks before inserting them. You will need to modify this file (instructions are included in the file), set up Rocket to substitute different layers for the ones in the menu and add the new layer names and settings to Malaya. Instructions for this are in this manual in the Layers section, and in Malaya.

Zing

 A slightly more elaborate version of Xing - this one allows you to break lines either horizontally or vertically.

Zlin

 Polyline pattern drawer. Enter a pattern of points and two endpoints, Zlin draws a polyline repeating the pattern a given number of times between the endpoints. The pattern can be saved to a named file which can be edited, commented, etc. See the more elaborate notes which you can find in the table of contents.

Zp

 Zoom Previous with timer.

 The original version of this had a line: (write-line "Command: Zoom") and another: (write-line "Zoom: All/Nothing/Hi mom/Infinite/Oblivion/(x): P") or whatever the prompt is so as to give the impression that I had actually entered the proper command, my superiors taking a dim view of any type of customization for some reason not clear to me (or, I imagine, to them). You can insert some version of them before the line (command "zoom" "p") if you're bored or paranoid.

Zx

 Zoom to the extents of selected entities or by default what is onscreen.

Notes

Notes

Notes

Notes

Notes

PAGE
12

